
Records of population history are embedded in the 
patterns of DNA sequence variation that exist among 
present day individuals. Indeed, genetics has become 
integral in delineating the evolutionary history of pop‑
ulations and species. However, reading the stories of 
population history written in DNA sequence variation 
is challenging and requires both comprehensive and 
accurate data and methods to interpret the compli‑
cated interplay of forces (including mutation, changes 
in population size, nonrandom mating, admixture 
and selection) that shape extant patterns of genetic 
diversity.

It seems almost difficult to recall that, until fairly 
recently, inferences of human history were hampered 
by small sample sizes and limited amounts of genetic 
data. Despite these challenges, a coherent narrative of 
human evolutionary history has been forged over the 
past several decades, providing striking insights into 
when and where anatomically modern humans arose 
(~200,000 years ago, probably in East Africa), the 
‘out‑of‑Africa’ dispersal and consequent population 
bottleneck ~70,000 years ago, and the routes and tim‑
ing of human migrations that led to colonization of all 
habitable parts of the world1. However, the development 
of massively parallel sequencing technology2 has ena‑
bled genome-scale data sets to be generated at a frenetic 
pace3,4. Thus, the challenges are no longer related to a 
lack of data (although more comprehensive sampling 
of geographically diverse individuals is needed5), but 
rather to how to interpret the deluge of whole-genome 
and whole-exome sequences that have emerged and 

continue to emerge, which hold considerable promise 
in revealing more nuanced, realistic and complicated 
models of human history4,6–8.

Here, we focus on the methodological and interpretive 
issues that arise in the inference of human evolutionary 
history from large-scale sequencing data. We concentrate 
largely on methods and approaches for inferring increas‑
ingly sophisticated models of human demographic 
history, and not adaptive evolution, which has been 
reviewed extensively9–13. We also emphasize the critically 
important role that quality control (QC) and exploratory 
data analyses (EDA) have in facilitating robust popula‑
tion genomics inferences, comprehensively discuss exist‑
ing methodologies and their limitations (TABLE 1), and 
highlight potential pitfalls that can arise when attempt‑
ing to extract parameter-rich (that is, complex) models 
of human history from genome-scale sequencing data. 
Although our emphasis is on human evolutionary his‑
tory, the methodological tools and issues discussed are 
broadly applicable. Indeed, many population genomics 
methods have been pioneered in the context of human 
data owing to the availability of large data sets, but as 
sequencing technology makes it increasingly possible to 
obtain high‑quality genomic data from other species, the 
issues and approaches described here extend well beyond 
the inference of human evolutionary history.

QC and EDA
The path from raw sequencing reads obtained from 
individuals to catalogues of single nucleotide variants 
(SNVs) involves many technical and analytical choices 
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Exploratory data analyses
(EDA). The initial stages of 
‘digging into’ a data set, usually 
by plotting low-dimensional 
summaries of the data.
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Abstract | The genomes of contemporary humans contain considerable information about 
the history of our species. Although the general contours of human evolutionary history have 
been defined with increasing resolution throughout the past several decades, the continuing 
deluge of massively large sequencing data sets presents new opportunities and challenges 
for understanding human evolutionary history. Here, we review the signatures that 
demographic history imparts on patterns of DNA sequence variation, statistical methods 
that have been developed to leverage information contained in genome-scale data sets and 
insights gleaned from these studies. We also discuss the importance of using exploratory 
analyses to assess data quality, the strengths and limitations of commonly used population 
genomics methods, and factors that confound population genomics inferences.
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Table 1 | Software for demographic inferences

Name Data type Inference Notes Refs

STRUCTURE Unlinked multi‑allelic 
genotypes

Population structure, 
admixture

User‑friendly GUI; can be computationally demanding 32

FRAPPE Unlinked bi‑allelic SNVs Population structure, 
admixture

Alexander et al.41 argue that convergence is not guaranteed 40

ADMIXTURE Unlinked bi‑allelic SNVs Population structure, 
admixture

Estimates the number of populations via cross-validation error 41

fastSTRUCTURE Unlinked bi‑allelic SNVs Population structure, 
admixture

Obtains variational Bayesian estimates of posterior probability 
distribution

42

Structurama Unlinked multi‑allelic 
genotypes

Population structure, 
admixture

Uses a Dirichlet process to estimate the number of populations 43

HAPMIX Phased haplotypes; 
reference panel

Chromosome painting Requires populations to be specified a priori 48

fineSTRUCTURE Phased haplotypes Population 
structure, admixture, 
chromosome painting

Can be used to identify the number and identity of populations 49

GLOBETROTTER Phased haplotypes Population 
structure, admixture, 
chromosome painting

Extends the fineSTRUCTURE approach to estimate unsampled 
ancestral populations and admixture times

7

LAMP Phased haplotypes; 
reference panel

Chromosome painting Identifies local ancestry in windows, rather than using an HMM, 
so is more discrete than other approaches

52

PCAdmix Phased haplotypes Chromosome painting, 
population structure

Uses PCA in small chunks followed by an HMM to estimate local 
ancestry

53

dadi Frequency spectrum of 
unlinked bi‑allelic SNVs

Demographic history Requires some Python‑coding skills; applicable to up to three 
populations

60

Fastsimcoal2 Frequency spectrum of 
unlinked bi‑allelic SNVs

Demographic history Can also be used to simulate data under the SMC 62,63

Treemix Frequencies of unlinked 
bi‑allelic SNVs

Admixture graph Highly multimodal likelihood surface and heuristic search; redo 
inference from many starting points

64

fastNeutrino Frequency spectrum of 
unlinked bi‑allelic SNVs

Demographic history Applicable only to a single population; designed specifically for 
extremely large sample sizes

65

DoRIS Lengths of IBD blocks 
between pairs of individuals

Demographic history IBD must be inferred (for example, using Beagle or GERMLINE); 
specification of lower cut‑off minimizes false‑negative IBD tracts

71,72

IBS tract 
inference

Lengths of IBS blocks 
between pairs of individuals

Demographic IBS can easily be confounded by missing data and/or sequencing 
errors

76

PSMC Diploid genotypes from one 
individual

Demographic history Best used in MSMC’s PSMC mode, which uses the SMC to 
more accurately model recombination than the original PSMC; 
applicable to a single population

78

MSMC Whole genome, phased 
haplotypes

Demographic history Requires large amounts of RAM; cross‑coalescence rate should 
not be interpreted as migration rate

82

CoalHMM Whole genome, phased 
haplotypes

Demographic history Multiple applications, including inference of population sizes, 
migration rates and incomplete lineage sorting

83–87

diCal Medium-length, phased 
haplotypes

Demographic history Uses shorter sequences than MSMC, but can be applied to 
multiple individuals in complex demographic models; infers 
explicit population genetic parameters for migration rates

89,92

LAMARC Short, phased haplotypes Demographic history Requires Monte Carlo sampling of coalescent genealogies; very 
flexible

93

BEAST Short, phased haplotypes Species trees, effective 
population sizes

Used mainly as a method of phylogenetic inference. Can also 
infer population size history

94

MCMCcoal Short, phased haplotypes Divergence times 
between populations

Now incorporated into the software BPP131 95

G-PhoCS Short, (un)phased 
haplotypes

Demographic history Incorporates migration into the MCMCcoal framework. Averages 
over unphased haplotypes

96

Exact likelihoods 
using generating 
functions

Short, phased haplotypes Demographic history Implemented in Mathematica; applicable only to specific classes 
of multi-population models

97,98

BEAST, Bayesian evolutionary analysis by sampling trees; BPP, Bayesian phylogenetics and phylogeography; CoalHMM, coalescent HMM; dadi, diffusion approximations 
for demographic inference; diCal, demographic inference using composite approximate likelihood; DoRIS, demographic reconstruction via IBD sharing; 
G-PhoCS, generalized phylogenetic coalescent sampler; GERMLINE, genetic error-tolerant regional matching with linear-time extension; GUI, graphical user interface; 
HMM, hidden Markov model; IBD, identity by descent; IBS, identity by state; LAMARC, likelihood analysis with metropolis algorithm using random coalescence; LAMP, 
local ancestry in admixed populations; MCMC, Markov chain Monte Carlo; MSMC, multiple SMC; PCA, principal components analysis; PSMC, pairwise SMC; RAM, 
random access memory; SMC, sequentially Markov coalescent; SNVs, single nucleotide variants.
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Likelihoods
The probabilities of the data 
given various models and their 
parameters, thought of as 
functions of those parameters. 
The parameter values that 
maximize the probability of the 
data in each model are called 
maximum likelihood estimates.

Eigenvectors
Vectors that, when multiplied 
by a given matrix, still point  
in the same direction.

Covariance matrix
An n × n matrix describing the 
covariance between each pair 
in a sample of size n.

that may influence downstream analyses. Thus, initial 
QC and EDA are of considerable importance. Here, we 
outline some salient aspects of genotype calling, QC 
and EDA that are important for population genomics 
inferences.

There are two key issues involved in calling genetic 
variation from high-throughput sequencing data. First, 
short reads must be mapped to a reference genome; sec‑
ond, those reads must be used to determine genotypes. 
Read mapping is influenced by the fact that sequenc‑
ing reads containing sites that differ from the reference 
genome will, in general, be harder to map, because they do  
not exactly match anywhere in the genome (or they 
may even by chance match a non-homologous sequence 
elsewhere in the genome). Although modern mapping 
software can deal with a small number of mismatches 
per read, regions with clustered mutations are still likely 
to seem less variable than they truly are owing to the  
difficulty of mapping highly divergent reads.

Given a set of reads that map with high quality, call‑
ing genotypes in haploid organisms is fairly straight‑
forward: every site is either reference or alternative. 
However, in diploid organisms, such as humans, het‑
erozygous sites introduce additional complexity into 
genotype calling. Accurate calling of heterozygous sites 
requires high‑coverage data to mitigate the effects of 
sequencing errors and the stochasticity inherent in sam‑
pling each allele. For instance, at a site that is sequenced 
to a depth of 2×, observing 1 read supporting the refer‑
ence allele and 1 read supporting the alternative allele 
may simply reflect a chance sequencing error. Moreover, 
for low-coverage sites, it is possible that one or the 
other allele is simply not sampled at all by any reads. 
However, for a site covered at 20×, observing 10 reads 
with a reference allele and 10 reads with an alterna‑
tive allele would make a strong case for the site being  
truly heterozygous.

Several tools exist to call diploid genotypes from 
resequencing data. Early methods for SNV calling 
used simple, counting-based rules (often favouring a 
homozygous reference genotype), whereas most mod‑
ern methods operate in a probabilistic framework by 
computing genotype likelihoods14. Genotype likelihoods 
quantify the probability of the observed data (that is, 
the reads covering a site), given every possible diploid 
genotype. Perhaps the most-commonly used soft‑
ware for making hard genotype calls in a probabilistic 
framework is the Genome Analysis Toolkit (GATK)14–16.  
GATK requires several tuning parameters that can 
influence SNV calling in unpredictable ways; thus, it is 
important to keep up to date on best practices in using 
GATK. Other methods have been developed to perform 
downstream population genomics analyses using geno‑
type likelihoods, which obviates the need to call a par‑
ticular genotype at every site and more‑properly models 
the uncertainty inherent to inferences from short‑read 
data (for example, REF. 17).

When genotypes have been called, they are typically 
subjected to several filtering criteria to ensure that only 
the most‑accurate data are used in downstream analy‑
ses. Parameters that are most‑commonly considered 

include sequencing depth, genotype and mapping qual‑
ity18, and measures of allelic bias (that is, the propor‑
tion of reads from each allele). Filtering is usually done 
on an individual basis, and then sites that are missing 
in a substantial fraction of individuals (for example, 
>10%) are removed from further analyses. Note that 
many population genetics statistics, such as nucleotide 
diversity, require knowledge of the total number of sites 
sequenced. Thus, it is critical to apply the same filtering 
criteria to all sites for each individual, and not just to 
those where a SNV was called. For example, there is a 
high probability that a heterozygous site with 2× cover‑
age will be called as a homozygote. If a higher depth of 
coverage is used to filter SNV calls, then the same criteria 
should also be applied to all sites, so that an accurate 
estimate of the total number of sites used in the analysis 
can be obtained.

Another QC step that is particularly useful in large 
data sets is to filter sites that strongly deviate from 
Hardy–Weinberg equilibrium (HWE). Specifically, hav‑
ing an excess of heterozygous individuals in a data set 
(in the extreme case, sites can appear as heterozygous 
in all individuals) is diagnostic of paralogous sequence 
variants that can result from mismapping of recently 
duplicated regions, or simply sites that exist in a genomic 
context that is hard to sequence. Although there are 
genome-scale deviations from HWE19, filtering out sites 
that show excessively strong departures from HWE will 
often result in removing only a small amount of data and 
avoiding serious errors in data analysis. Furthermore, 
maps of segmental duplications20 and other potentially 
problematic sequences can also be used as filtering 
criteria to focus on regions that are most amenable to  
accurate read mapping and genotype calling.

When a set of robust genotypes is obtained, it is 
useful to perform some simple EDA to assess overall 
data quality, understand characteristics of the data and 
identify potential unwanted sources of variability. For 
example, principal components analysis (PCA) forms 
a central pillar of EDA for population genomics data. 
In brief, PCA finds the eigenvectors of the covariance 
matrix derived from genotypes among individuals. 
These eigenvectors provide the coefficients of the lin‑
ear combinations of genotypes that most‑effectively 
differentiate the various samples, without requiring 
a priori information on the classification of samples. 
Then, samples are typically plotted according to their 
loadings on the first few PCs. Ideally, samples will be 
separated according to their recent ancestry; individu‑
als with more‑similar genotypes on average will clus‑
ter closer in PC space, whereas more‑distantly related 
individuals will lie further apart (as discussed below). 
However, PCA can also be used to identify techni‑
cal sources of variation, which might arise if samples 
are sequenced by different instruments or at multiple 
facilities, or are processed with different batches of rea‑
gents3. It is particularly important to assess these fac‑
tors when integrating data sets from distinct sources. 
Overall data summaries, such as the ratio of transitions 
to transversions, and individual-level metrics, such as 
the number of heterozygous sites, are also helpful in 
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identifying systematic biases and poor‑quality data 
from particular samples, respectively. In short, mas‑
sively parallel sequencing data sets are complex and 
imperfect. The goals of QC and EDA are to minimize 
the effect of genotyping errors on subsequent analyses 
and to better understand the non-biological factors that 
contribute to patterns of variation.

Intelligently leveraging genomic‑sequence data
A powerful feature of genome-scale data is that it allows 
careful choice of the genomic regions that are most 
appropriate to answer particular questions of inter‑
est. For example, in analyses of demographic history, 
it is important to mitigate the confounding effects of 
natural selection, which can lead to biased inferences. 
Although an elegant solution to this issue would be to 
explicitly account for the joint effects of selection and 
demography, the methods to robustly do so are not well 
developed (but see REFS 21,22 for strategies that can 
simultaneously model selection and demography). A 
more‑straightforward approach is to restrict analyses 
to genomic regions that are least likely to be influenced 
by selection (FIG. 1). Indeed, carefully sampling puta‑
tively neutral regions has been shown to significantly 
influence inferences such as sex-biased gene flow23,24 
and recent growth rates25. These studies have largely 
focused on genomic regions that are not in close prox‑
imity to protein-coding regions. However, the develop‑
ment of comprehensive functional genomics data sets, 
such as the Encyclopedia of DNA Elements (ENCODE) 
Project26 and the Roadmap Epigenomics Project27, has 
created powerful new opportunities for population 
genomics inferences by facilitating the identification of 
more‑carefully defined neutral regions. For instance, 

high-resolution maps of regulatory DNA defined by 
DNase I‑hypersensitive sites (DHS), chromatin immu‑
noprecipitation followed by sequencing (ChIP–seq) and 
histone marks now exist26,27. Such data, when integrated 
with information about evolutionary conservation28, 
background selection29, regions that have experienced 
recent positive selection12 and sequences that show 
accelerated rates of evolution in the human lineage30 
(FIG. 1), allow putatively neutral sequences to be defined 
in ways that were previously not possible.

In addition, maps of recombination can also be 
integrated into a comprehensive sampling strategy to 
guide decisions on how best to minimize the effects of 
background selection (that is, choosing neutral regions 
that are not closely linked to functionally important 
sequences). Tools to automate the selection of puta‑
tively neutral regions have been developed31, although 
at present they do not incorporate all of the potential 
features that could be leveraged and there is no con‑
sensus on what specific combination of functional and 
comparative genomics features is best for delineat‑
ing putatively neutral sequences. When using exome 
data, for example, the wealth of functional genomics 
phenotypes and evolutionary conservation can also 
be leveraged to focus on the variants that are least 
affected by selection (for instance, unconstrained four‑
fold synonymous sites that do not overlap DHS), but 
background selection is still likely to be an issue when 
making inferences from protein-coding sequences. In 
short, a considerable amount of information now exists 
about the landscape of putatively functional sequences 
across the human genome, and this knowledge should 
be leveraged when making inferences of population 
demographic history.

Nature Reviews | Genetics
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Figure 1 | Identifying demographically informative genomic regions.  
Functional and comparative genomics data can be leveraged to identify 
putatively neutral regions in a principled way. This schematic shows various 
functional and comparative genomics data, as well as sequences that are 

structurally complex (segmental duplications (SegDups)) or subject to 
adaptive evolution (human accelerated regions (HARs)). ChIP–seq, chromatin 
immunoprecipitation followed by sequencing; DHS, DNase I‑hypersensitive 
sites; H3K27ac, histone H3 acetylated at lysine 27; Txn, transcription.
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Panmictic population
A group of individuals among 
whom random mating occurs.

Linkage disequilibrium
(LD). Nonrandom association 
between alleles at physically 
distinct genomic loci. Over 
time, this will be broken  
down by recombination.

Coalescence times
The times in the past when 
genomic regions shared a 
common genetic ancestor.

Isolation by distance
Genetic differentiation 
between individuals induced 
by geographic separation. 
Individuals that are closer 
geographically will be  
closer genetically.

Overfitting
By adding more parameters to 
a model, it will begin to model 
the noise in the observed data, 
rather than the true underlying 
mechanism of data generation. 
Overfit models will generalize 
poorly to new data sets.

Cross-validation error
The error in predicting the 
structure of a held-out portion 
of the data, when a model is 
trained on a subset of the 
whole data set. Minimizing 
cross-validation error is an 
effective way to choose 
parameters and 
hyperparameters.

Inferences of population structure and admixture
After a set of robust genotypes from appropriate 
genomic regions is obtained, inferences of popula‑
tion structure are often performed. Understanding the 
genetic structure of sampled individuals serves two 
purposes. First, patterns of population structure are of 
direct interest in understanding human evolutionary 
history, times of population splitting, migration rates 
and patterns of mating among individuals. Second, 
many approaches for inferring parametric models of 
demographic history assume either a single, randomly 
mating population (a panmictic population) or knowledge 
of population structure. The development of software 
to effectively infer population structure using geno‑
type data revolutionized population genomics, both as 
a tool for EDA and as a method for explicit hypoth‑
esis testing32. Here, we discuss different methods and 
approaches for identifying population structure and 
inferring population genetics parameters governing 
such patterns. FIGURE 2 illustrates the types of inferences 
that can be made from the methods described below, 
assuming a fairly simple three-population model with 
differential migration.

Identifying populations and testing for admixture. 
PCA has long been an important tool for inferring and 
visualizing population genetic structure33. PCA does 
not require a priori knowledge of population structure 
because it acts to project an individual’s multilocus gen‑
otype onto a small number of dimensions (often two 
dimensions) that maximally separate the data (FIG. 2). 
With sufficient amounts of data, even very fine-scale 
patterns of population structure can be detected34, which 
are sometimes more readily observed in lower‑ranked 
PCs than in higher‑ranked PCs35. When applying PCA 
to exome or genome sequencing data, it is important to 
prune SNVs based on patterns of linkage disequilibrium 
(LD), as PCA assumes that markers are independent. 
Furthermore, care must be taken to not over-interpret 
PCA results. Although it is possible to interpret PCA in 
terms of mean coalescence times between pairs of indi‑
viduals36, several caveats must accompany inferences 
made from PCA. In populations with recent, large-scale 
shifts in demography (such as humans), the directions of 
highest variability may be counterintuitive. For example, 
François et al.37 found that, in models of range expan‑
sion, the directions of highest variability were perpen‑
dicular to the axis of expansion, which is contrary to 
the expectation that the direction of the highest vari‑
ability should be parallel to the direction of expansion, 
as assumed by Cavalli-Sforza et al.33. Similarly, although 
it is possible that projections onto PC space may 
match geographical distributions of individuals under  
models of isolation by distance34,38, this depends crucially 
on the sampling strategy and should not be expected 
in most cases in which PCA is applied to genetic data 
(but see REF. 39 for a PCA-like approach that explicitly  
incorporates spatial information).

In addition to PCA, many approaches for popula‑
tion assignment have been developed, but they are all 
largely similar to the popular software STRUCTURE32, 

in that they look for groups of individuals that share 
common underlying allele frequencies and that are 
mutually in HWE. However, the specific technical 
details vary among methods. The original implemen‑
tation of STRUCTURE is Bayesian and uses Markov 
chain Monte Carlo (MCMC) to average over underly‑
ing allele frequencies and assignments, and hence can 
be unreasonably slow for modern genomic data sets. 
By contrast, likelihood methods such as FRAPPE40 and 
ADMIXTURE41 are substantially faster and are recom‑
mended for large data sets. fastSTRUCTURE42 allows for 
fast Bayesian inference of population structure, running 
on comparable timescales to ADMIXTURE but poten‑
tially providing more information about uncertainty 
in a given runtime, because ADMIXTURE requires 
bootstrap resampling to compute standard errors, 
whereas fastSTRUCTURE provides estimates of credible  
intervals as a natural part of the inference.

A key issue when running a STRUCTURE-like analy‑
sis is that the number of populations expected must be 
defined a priori (but see Structurama43 for a method that 
uses a Dirichlet process to jointly infer the number of 
populations along with the population assignments). 
This is because the likelihood of the data will always be 
improved by adding more parameters (that is, more pop‑
ulations); however, those extra populations are merely 
overfitting the noise in the data. In the original publica‑
tion, the researchers who developed STRUCTURE32 
used the marginal likelihood of the data with different 
numbers of populations to estimate the optimal number 
of populations. Although marginal likelihood compari‑
son is theoretically well justified, it is difficult in prac‑
tice to obtain stable estimates of the marginal likelihood 
from an MCMC run44. Therefore, care must be taken 
when using marginal likelihoods to infer the number of 
populations and, ideally, results of this analysis should be 
corroborated with alternative approaches. For example, 
ADMIXTURE recommends finding the number of pop‑
ulations that minimizes the cross-validation error; that is, 
the error in predicting the genotypes of held-out markers 
across individuals. Raj et al.42 found that this approach 
does not work well with fastSTRUCTURE, and instead 
suggested using a marginal likelihood approximation 
combined with an estimate of the effective number of 
populations to obtain bounds on the possible number 
of populations.

In addition to identifying populations, STRUCTURE-
like analyses provide an estimate of the fraction of each 
individual’s genome that comes from each population 
(FIG. 2). In the case of STRUCTURE, specifically, the 
analysis is also able to assess the probability that an 
individual belongs to one or the other population; note 
that this is distinct from the more‑common activity of 
estimating admixture proportions.

Local ancestry deconvolution: chromosome painting. 
When an individual is identified as admixed, it can be 
helpful to identify the regions of their genome that come 
from the different source populations. For instance, 
identifying segments of a specific ancestry can be use‑
ful in admixture mapping45. Moreover, by explicitly 
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size and asymmetric gene flow is shown. a | Demographic model. b–f | Schematics for the output of various 
methodological tools discussed in the text are illustrated. Principal components analysis (PCA) qualitatively illustrates 
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Ancestral recombination 
graphs
Graph structures representing 
the genealogical history of a 
sample with a recombining 
genome. In addition to 
coalescence events (which 
bring two lineages together 
and therefore reduce the 
number of lineages in  
the graph), recombination 
events cause splits to occur, 
which increases the number  
of lineages in the graph.

Hidden Markov model
(HMM). A statistical model  
in which a set of underlying 
hidden states are assumed to 
follow Markov chain dynamics 
and induce a set of observed 
states.

Reference panel
A large number of individuals, 
related to samples of interest, 
for which some quality is 
known (for example, allelic 
phase).

Effective population size
The size that a theoretical 
population evolving under a 
Wright–Fisher model would 
need to be in order to match 
aspects of the observed 
genetic data.

modelling correlation in ancestry along the genome 
and the length distribution of ancestry segments, these 
approaches can obtain a more fine-grained picture of the 
history of admixture46.

Production of such maps, known as local ancestry 
deconvolutions (or, more colloquially, as chromosome 
paintings; FIG. 2), requires a model of how ancestry 
changes along a genome. In principle, modelling genetic 
ancestry using the coalescent with recombination 
(which results in genealogical representations known 
as ancestral recombination graphs) provides a generative 
model of how individuals are related across different 
parts of their genome. Unfortunately, computation 
under the coalescent with recombination is extremely 
difficult, because very few calculations can be done 
analytically and the number of ancestral recombina‑
tion graphs compatible with a given data set is very 
large. One of the most common approaches to infer‑
ence of local ancestry is to use an approximation to the 
coalescent with recombination, which was proposed 
by Li and Stephens47, and approximate the genome of 
the individual in question as a noisy mixture of the 
genomes of a reference set of individuals using a hidden  
Markov model (HMM). When this reference set of indi‑
viduals is assigned to a priori populations, the popu‑
lation labels can be transferred to the chromosome, 
resulting in an assignment of each segment of chromo‑
some to a particular ancestral population. Examples 
of algorithms using this approach include HAPMIX48 
and fineSTRUCTURE49. Note that, unlike HAPMIX, 
fineSTRUCTURE identifies populations that are not 
known a priori, which is similar to what STRUCTURE-
like approaches do for population assignment. The 
method GLOBETROTTER modifies and extends  
the fineSTRUCTURE algorithm to account for ances‑
try from unsampled populations and has been used 
to reconstruct fine-scale population structure world‑
wide7. A key limitation of these methods is that they 
assume that admixture tract lengths are exponentially 
distributed and independent. For low rates of admix‑
ture, this is a reasonable assumption6,50; however, recent, 
strong admixture results in correlated admixture tracts 
that are stochastically larger than expected under an  
exponential distribution51.

Several other methods for local ancestry deconvolu‑
tion exist that do not work within a generalized Li and 
Stephens framework. However, all require some form of 
reference panel. Some, such as LAMP (local ancestry in 
admixed populations)52 and PCAdmix53, are fundamen‑
tally based on breaking the genome into windows and 
clustering relative to the reference panel within each win‑
dow. The advantage of these methods is that they do not 
require assumption of a parametric population genetic 
model, which is necessarily an approximation to the 
complex dynamics of the underlying ancestral recom‑
bination graph. This makes such approaches applicable 
in cases in which the underlying demographic history 
is extremely complex or unknown, but can result in a 
substantial loss of power and interpretability. Moreover, 
choosing hyperparameters of such models, such as an 
optimal window size, is an important consideration. 

Windows that are too small will not have enough SNVs 
(and thus no information regarding ancestry), whereas 
windows that are too large may be disrupted by recom‑
bination and therefore may contain ancestry from differ‑
ent sources. LAMP provides an algorithm for choosing 
an optimal window size based on the assumed admix‑
ture parameters (for example, its intensity and how long 
ago it occurred), whereas the authors of PCAdmix state 
that their method performs well assuming windows  
contain at least ten SNVs.

Inferring complex demographic models
Armed with a better understanding of the genetic  
structure of a sample, it is now possible to explore 
more‑complex and parameter-rich demographic mod‑
els, including events such as population divergence, 
migration and changes in effective population size. In con‑
trast to methods for determining population structure, 
there is no ‘black-box software’ to take genetic data and 
return an essentially unsupervised inference of demo‑
graphic history. Therefore, these methods require the 
user to specify a model within the scope of inference of a 
given method and to provide parameter estimates within 
the context of that model. Most of the following methods 
are likelihood-based, and we make several best-practice 
recommendations about how to use them in BOX 1. For 
models in which the likelihood cannot be calculated, we 
examine the simulation-based strategy of approximate 
Bayesian computation (ABC) in BOX 2.

Methods based on the SFS. One of the most‑useful sum‑
maries of population genomic data is the site frequency 
spectrum (SFS; FIG. 3). The SFS is a count of how many 
derived alleles in a sample of size n show up in 1/n, 
2/n, … (n-1)/n individuals (note that, if ancestral and 
derived statuses cannot be assigned, it is possible to use 
the folded SFS, which tracks minor allele frequency). 
Many common statistics in population genetics, includ‑
ing the number of segregating sites (S) and the average 
nucleotide diversity (π) are themselves summaries of 
the SFS.

The SFS contains information about both demog‑
raphy and natural selection in a population. For a pan‑
mictic population of a constant size subjected to no 
natural selection, the proportion of alleles found in i out 
of n chromosomes is proportional to 1/i  (REF. 54), and 
deviations from this expectation can be used to make 
inferences about population history. There are several 
important qualitative features of a SFS that provide a 
clue towards population history (FIG. 3). For instance, 
recent population growth is indicated by an excess 
of low-frequency alleles compared with the expecta‑
tion under neutrality; this is caused by the influx of 
new mutations in newly born individuals. Similarly, 
a recent population bottleneck results in an excess of 
low-frequency alleles, which is due to the reduction  
in population size causing low-frequency alleles to be 
lost. Population subdivision can have various effects 
on the SFS, including an increase in both medium-
frequency and high-frequency alleles, depending on 
migration rates and divergence times.
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Poisson process
A stochastic process in which 
new events occur at a constant 
rate per unit of time. Often 
used to model mutation.

To gain a more‑quantitative understanding of pop‑
ulation history, the Poisson random field (PRF) frame‑
work is used55. The PRF assumes that new mutations 
enter the population as a Poisson process, and that each 
new mutation is completely unlinked to any currently 
existing mutation. Under these assumptions, the counts 
of derived alleles at each frequency follow a Poisson 
distribution with a mean given by averaging a bino‑
mial sample over the underlying population frequency 
spectrum. The form of the population frequency spec‑
trum is determined by the demographic and selective 
history under consideration. It is also possible to 
simply consider relative proportions of sites at each 
frequency, which follows a multinomial distribution. 
Therefore, it is possible to calculate the likelihood of 
the observed data and to use the principle of maximum 
likelihood to find the parameters that best explain  
the data.

An important caveat to inference based on the SFS 
is that, under the PRF, some types of demographic his‑
tory are not statistically identifiable. Statistical identifi‑
ability refers to the ability to distinguish data generated 
under one set of parameters from data generated under 
a different set of parameters. Thus, if inference is made 
without a guarantee of identifiability, the underlying 
true demographic history will not be recovered, even 
with an infinite amount of data. Nonetheless, for 
many families of ‘reasonable’ demographic histories, 
the demographic model is identifiable from the SFS56; 
unfortunately, the uncertainty in parameter estimates 
from the SFS is substantially larger than the amount of 
uncertainty in many problems in classical statistics at 
a given sample size57.

Early work looked at the SFS as a way to estimate 
parameters of natural selection (for example, REF. 58). 
However, in the past few years the SFS has mainly been 
used as a way to estimate demographic parameters. 
Although some earlier methods were able to model 
simple demographic histories in a single popula‑
tion21,59, it was not until the release of dadi (diffusion 
approximations for demographic inference)60 that 
complicated histories, including up to three popula‑
tions, could be analysed. These models are specified 
using user-written Python scripts, and can be relatively 
complicated, featuring divergence times, admixture 
events, migration rates and arbitrary population size 
histories; dadi can be used to estimate all relevant 
parameters.

Despite its power, dadi has several limitations. Most 
critically, because it numerically solves a partial dif‑
ferential equation (PDE) to obtain the population fre‑
quency spectrum, it can be computationally intensive 
to analyse complicated population histories or large 
sample sizes. Thus, analysis in dadi is limited to three 
populations, and it is recommended to analyse only 
subsets of individuals when a data set contains a large 
sample size of individuals6. Moreover, the numerical 
solution of the PDE can be unstable, causing jagged 
likelihood surfaces, which results in gradient-based 
optimization methods (such as the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method included in the dadi 
package) performing poorly. Instead, we recommend 
using the Nelder–Mead simplex method, which is more 
robust to small, jagged areas in the likelihood surface. 
Another approach, still operating in the framework of 
PDEs but using orthogonal polynomials as opposed to 

Box 1 | General guidelines for likelihood inference from genomic data

Population genomic data enable inference of detailed, parameter-rich models. However, complicated models require 
complicated inferential steps; here, we outline several important steps that should be taken to ensure that parameter 
estimates are optimal.

Several methods described in this Review assume that genotyped sites are unlinked (for example, STRUCTURE or 
dadi (diffusion approximations for demographic inference)). Although application of the theory of composite 
likelihood generally ensures that correlated allele frequencies across loci do not result in biased parameter estimates, 
it will result in estimates of error that indicate a higher degree of confidence than is truly warranted by the data107. 
Hence, we recommend pruning linkage disequilibrium (LD) before analysing data in a model that assumes unlinked 
sites. This can be done by using software such as PLINK108 to prune markers that are in high LD with each other. 
Another, less‑principled approach, is to simply break the genome into windows on the scale of LD decay and take one 
site per window.

In contrast to the methods above, several methods assume that there is no recombination between sites (for example, 
LAMARC93). In this case, there is a trade‑off between choosing sufficiently large genomic segments such that there are 
enough variable sites to be informative and selecting segments that are small enough so that they are not very affected 
by recombination. At a minimum, analysed data ought to pass the four-gamete test (that is, ensuring that only three of 
the four possible haplotypes are present for any pair of sites) to rule out regions that have been too strongly disrupted 
by recombination.

More generally, because the models of demographic history can be incredibly complex and the likelihood surfaces 
are potentially multimodal, it is important to perform inference in a careful manner. First, we recommend building  
up from simpler to more‑complicated models. For instance, fitting a model to two populations before attempting  
to fit a three-population model, and using the two-population model fit as a guide for the three-population model fit. 
Although this ‘greedy’ approach, in which one sequentially selects more complicated models, may result in a 
suboptimal model fit, it simplifies the model‑fitting procedure considerably by reducing the parameter space. Another 
critical step is to ensure that that the maximum likelihood estimate of the parameters is obtained from multiple, 
random initial parameter guesses. This will help to ensure that the maximum likelihood estimate obtained is a global 
maximum, rather than a local maximum.

R E V I E W S

734 | DECEMBER 2015 | VOLUME 16	 www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved



Identity by descent
(IBD). Whether a genomic 
region has descended from  
an ancestor unchanged. A 
genomic region in two (or 
more) individuals is identical  
by descent if it is inherited 
from a common ancestor 
without being broken up by 
recombination. Some authors 
require IBD segments to also 
be identical by state, that is,  
to also have no mutations in 
the region.

Identity by state
(IBS). Whether a genomic 
region has the same sequence 
as the corresponding region in 
another individual. A genomic 
region in two (or more) 
individuals is identical by state 
if it contains no mutations that 
distinguish the two individuals. 
Note that a region of IBS is not 
necessarily also identical by 
descent.

a finite element method, is able to handle histories of 
up to four populations61, but is still computationally 
demanding.

Several other methods exist to infer demography 
from the SFS that are complementary to dadi. To over‑
come the limitation of only being able to analyse three 
populations, Excoffier et al.62 developed a method 
using coalescent simulation to estimate the expected 
SFS under a given demographic history. This method, 
which is integrated into the software package fast‑
simcoal2 (REF. 63), can handle arbitrary numbers of 
populations and arbitrarily complicated demographic 
histories. However, it can be computationally inten‑
sive because it requires a large number of simulations 
to obtain a stable estimate of the SFS. Another method 
that can accommodate histories of more than three 
populations is Treemix64. Treemix does not model the 
SFS per se, but instead uses the covariance in allele fre‑
quency among populations to both learn an underly‑
ing population tree ab initio and infer admixture events 
between pairs of populations (FIG. 2). Bhaskar et al.65 
proposed a different method in fastNeutrino, which 
instead computes the theoretical SFS exactly and ana‑
lytically using coalescent theory. Therefore, this method 
is amenable to more‑rapidly converging gradient-based 
optimization algorithms. Importantly, fastNeutrino is 
readily able to scale to large data sets; for example, it 
was used to analyse a sample of 14,000 individuals of 
European ancestry65. However, fastNeutrino is only 
capable of estimating parameters for one population 
at a time. Therefore, it may be confounded by migra‑
tion and admixture, which tend to inflate estimates of 
population size.

Methods based on haplotype data. Although allele fre‑
quencies can be used to make powerful inferences, it is 
ultimately desirable to make full use of the information 
contained in patterns of linkage between sites. However, 
modelling a recombining genome is substantially more 
difficult than modelling unlinked SNVs, as done with 
the PRF model. Using coalescent theory, it is possible to 
associate a genealogy with each position in the genome, 
with recombination causing the genealogy to change 
along the genome. Demography influences coalescence 
times, which in turn influence the patterns of mutations 
seen in the data (FIG. 3). For instance, during periods  
of small effective population sizes, more coalescences will  
occur, whereas at times of large effective size, there  
will be fewer coalescences. Haplotypes that coalesce 
more anciently will contain more mutations; therefore, 
the pattern of mutations encodes information about the 
underlying genealogy and also the demographic history. 
However, because the full coalescent with recombina‑
tion includes long-range correlations between sites, the 
state space of genealogies compatible with the sample 
becomes extremely large66,67. Several methods attempt 
to circumvent this issue by considering summaries of 
haplotype diversity; specifically, a number of methods 
attempt to fit the distribution of regions of identity by 
descent (IBD) or identity by state (IBS).

A region is identical by descent between two indi‑
viduals if it was inherited from a common ancestor 
without being disrupted by recombination. Because 
this is not directly observable from genetic data, meth‑
ods that use patterns of IBD sharing require the data 
to be preprocessed by IBD‑detection software, such as 
Beagle68 or GERMLINE (genetic error-tolerant regional 
matching with linear-time extension)69. Ralph and 
Coop70 used patterns of IBD sharing to obtain a quali‑
tative understanding of relatedness in a large cohort of 
individuals of European ancestry. In a more‑explicitly 
model-based framework, DoRIS (demographic recon‑
struction via IBD sharing)71 uses coalescent theory to 
predict the distribution of lengths of IBD tracts within 
a single population (see also REF. 72 for an exten‑
sion to multiple populations). One strength of this 
approach is that there is little need to model compli‑
cated recombination structures, because IBD segments 
are assumed to not be broken up by recombination. 
However, ascertaining IBD segments can be quite chal‑
lenging, especially for small segments that correspond 
to more‑ancient historical events70. Thus, great care 
needs to be taken during the preprocessing step of IBD 
detection before these methods are applied. A specific 
and important recommendation is to use only IBD 
blocks that are longer than a certain map length. At a 
minimum, IBD blocks used for parametric inference 
should be no shorter than 1 cM, and ideally no shorter 
than 2 cM, as recommended by the authors of DoRIS, 
and supported by power and false‑positive analyses73. 
Most approaches that perform inference based on IBD 
blocks explicitly condition IBD tract size to be larger 
than a specific cut‑off when calculating the likelihood; 
thus, using a minimum length cut‑off will not result in 
biased inferences.

Box 2 | Approximate Bayesian computation

For many problems in population genomic inference, the likelihood function is 
intractable. Although both Monte Carlo integration and analytical approximations 
have enabled the computation of nearly exact likelihoods in many cases (see main 
text), there are still a substantial number of models in which it seems unlikely that an 
analytical likelihood can be calculated. In these cases, an attractive alternative method 
is approximate Bayesian computation (ABC). ABC is based on the intuitive idea that 
models that have a high posterior probability will produce summary statistics that are 
close to those calculated from the observed data. Several thorough reviews of ABC  
are available109–112, and we briefly cover salient features of this method here.

ABC works by replacing the likelihood with approximate rejection sampling. 
Parameters from simulations that produce summaries that are close to the observed 
data are retained as approximate draws from the posterior probability distribution. 
Thus, it is applicable to any data set in which efficient simulation is possible, even if 
likelihood calculation is not possible. Several methods exist to obtain these 
approximate posterior probability distributions, including simple rejection sampling, 
ABC-MCMC (ABC Markov chain Monte Carlo)113 and particle filters114. Many of these 
approaches are facilitated by the ABCtoolbox package115.

The primary challenge of ABC is to choose appropriate summary statistics that are 
informative with regard to the parameters. It is theoretically optimal to use only 
sufficient statistics that are informative about the parameters of interest. However, it is 
often not easy to identify sufficient statistics. Thus, many analyses simply opt to use as 
many summary statistics as possible. However, one is then faced with the problem of 
dimensionality: the probability that any particular simulation matches all the summary 
statistics will be very low. A common solution to this problem is to use partial least 
squares regression to weight summary statistics by their relevance113, although there 
are novel approaches that may provide better performance116.
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SMC’
A modification to the 
sequential Markov coalescent 
(SMC) that allows for hidden 
recombination events that do 
not change the local genealogy.

When the sequences under consideration may have 
experienced one or more recombination events, it 
becomes necessary to average over the possible recom‑
bination histories that may have shaped the observed 
haplotypes. Inspired by the work of Wiuf and Hein67, 
who showed how to model the coalescent with recom‑
bination as a stochastic process along a DNA sequence, 
McVean and Cardin74 introduced the sequentially 
Markov coalescent (SMC) to make calculations with 
recombination simpler. In brief, the SMC approximates 
the full coalescent with recombination by assuming 
that, when a recombination event occurs, the geneal‑
ogy at the site to the right of the recombination event 
depends only on the genealogy at the site to the left of 
the recombination event. This assumption eliminates 
long-range correlations in genealogies that generally 
have very little effect on the data. A modified SMC, 
called the SMC’ (REF. 75), increases the accuracy of the 
approximation substantially; most current inference 
strategies make use of the SMC’.

Using the SMC’ approximation, Harris and Nielsen76 
developed a method similar to DoRIS that fits the dis‑
tribution of IBS lengths to infer demographic history. 
In contrast to inference based on IBD segments, IBS 
tracts are, in principle, directly observable in the data. 
However, sequencing errors and missing data can make 
calling IBS tracts more difficult than naively expected. 
Nevertheless, this method has been used to analyse data 
from a diverse range of species, including humans and 
polar bears77.

Li and Durbin78 introduced one of the most popular 
methods that leverage the SMC to perform demographic 
inference, which is called pairwise SMC (PSMC). PSMC 
is directly applicable to whole-genome data from a sin‑
gle diploid individual without the need for phasing. 
Moreover, this method is capable of averaging over 
missing data, which helps it deal with the fact that many 
regions of the genome present difficulties for read map‑
ping owing to repetitive elements and structural varia‑
tion. PSMC is a HMM that moves along the sequence, 
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Figure 3 | The effect of demographic perturbations on gene 
genealogies and the SFS.  Four simple population demographic models 
are shown: constant model, bottleneck model, expansion model and 
structured population model. Below each model schematic, we show 
average gene genealogies from five sampled lineages obtained  
by coalescent simulations and stylized site frequency spectrum  
(SFS; plotted on a logarithmic scale) generated from each model.  

The SFS from the constant‑sized population model is shown in red on 
each subsequent plot to facilitate comparison among models. 
Demographic events influence the shape and structure of the 
genealogies, which in turn influence patterns of genetic variation, 
such as the SFS. Many popular methods leverage the SFS for inferring 
population demographic history. The double-ended arrow indicates 
bidirectional migration.
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Conditionally sampled 
alleles
Alleles that are sampled from  
a population given that a set  
of reference alleles is already  
in hand.

inferring the time of the most‑recent common ancestor 
between the two haplotypes that make up the diploid 
sequence. Hence, PSMC can be used to infer the history 
of effective population size for that sample. Importantly, 
PSMC infers demographic history in a relatively non-
parametric way compared to more‑explicitly paramet‑
ric models (such as exponential growth), by assuming a 
piecewise constant demographic history. This approach 
dates back to the introduction of Bayesian skyline 
plots, which were initially developed in the context of  
non-recombining haplotype data79–81.

PSMC was extended to be able to handle data from 
multiple individuals, in an approach called multiple 
SMC (MSMC)82. In contrast to PSMC, MSMC uses 
the SMC’ approximation, which increases its accuracy. 
When analysing multiple individuals, MSMC requires 
phased data; however, it is able to operate on a single, 
unphased diploid genome in the same way as PSMC. 
Because MSMC can be used to model haplotypes from 
individuals of different populations, it is able to estimate 
a proxy for the migration rate between populations. 
However, this parameter, called the relative cross coales‑
cence rate, should not be interpreted as a direct estimate 
of the migration rate, because it simply measures the 
fraction of between-population coalescences compared 
with within-population coalescences.

Several other HMM-based approaches to inferring 
demographic history from full-genome data exist. In 
parallel to the development of the SMC and PSMC, 
Hobolth et al. (REF. 83) developed the coalescent HMM 
(CoalHMM) framework (see also REFS 84–87). This 
software is primarily focused on making comparisons 
between species and was essential in understanding the 
effect of incomplete lineage sorting between humans, 
chimpanzees and gorillas88. More recently, software 
called demographic inference using composite approxi‑
mate likelihood (diCal)89 was released, building on the 
theory of conditionally sampled alleles90 using a modifi‑
cation of the approach developed by Paul et al.91. Early 
versions of diCal could be used to model multiple sam‑
pled haplotypes within a given population for estimating 

population size histories (in a similar way to PSMC). 
Subsequent developments (for example, REF. 92) have 
incorporated migration and allowed for inference of 
models with more than one population.

A substantial drawback of these haplotype-based 
methods is that they almost always require some form 
of data preprocessing. As mentioned, any method 
that requires detection of IBD segments can only be 
as good as the quality of the detected IBD segments 
allows. Similarly, all methods except PSMC (or MSMC 
in its PSMC mode) require data to be phased. Phasing 
requires large reference populations that are closely 
related to the samples of interest. Although the 1,000 
Genomes Project provides these data for many world 
populations, as interest in the demography of more iso‑
lated populations grows, it may become difficult to phase 
individuals accurately.

Conclusions and future perspectives
The ability to obtain genome-scale data from multiple 
individuals in a population has created the opportunity 
to infer human demographic history with unprecedented 
resolution and accuracy. To make use of all of these 
data, numerous innovative and sophisticated methods 
have been developed to infer population structure and 
demographic history. Nonetheless, the strengths and 
limitations of methods should be carefully considered, 
and care needs to be taken to ensure that they are used 
properly and with the maximum power.

Models used for inference are becoming increas‑
ingly complicated and realistic, although they have not 
yet met the ‘gold standard’ of obtaining the full likeli‑
hood of genetic data given a demographic history. 
Although some models, such as LAMARC (likelihood 
analysis with metropolis algorithm using random coa‑
lescence)93, BEAST (Bayesian evolutionary analysis by 
sampling trees)94, MCMCcoal95, and G-PhoCS (gen‑
eralized phylogenetic coalescent sampler)96 are capa‑
ble of using Monte Carlo methods to average over the 
underlying genealogies, it is likely to be impossible to 
derive a closed-form expression for the likelihood with 

Box 3 | Leveraging ancient DNA

Ancient DNA (aDNA) gives us a window into the past that is normally unavailable when using data derived from 
contemporary individuals. Substantially different models of demography and selection can be consistent with a given 
set of modern DNA observations, and aDNA can be used to differentiate between the alternatives117. Because obtaining 
high‑quality aDNA sequences is technically challenging and expensive, aDNA is best collected with the goal of testing 
specific hypotheses. However, aDNA studies frequently reveal unanticipated aspects of history.

Perhaps the quintessential example of aDNA providing insights into human demographic history is the revelation of 
Neanderthal admixture in modern humans118. Although some believed there was evidence of archaic admixture before 
the publication of the Neanderthal genome119, direct comparison of human and Neanderthal DNA delivered conclusive 
proof of admixture (but see REF. 120 for a possible alternative hypothesis).

In addition to revealing demographic history, aDNA has been instrumental in understanding the effect of selection in 
humans. Motivated by the evidence of strong selection at the lactase locus in modern Europeans, several groups obtained 
targeted aDNA from the lactase locus in ancient Europeans121–125. Supporting the hypothesis of strong positive selection, 
the lactase persistence allele is found to be mostly absent in ancient Europeans. These and other observations have 
motivated the development of several methods to analyse aDNA time series to estimate selection coefficients126–129.

A promising new development for using aDNA in population genomic analyses is the development of sequence 
capture. Using a combination of sequence capture and other enrichment techniques, numerous ancient genomes have 
been analysed across Eurasia, promising increasingly fine-scale information about history130.
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