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Materials and Methods 
 
Sample description 
 
The 50 ethnic Tibetans analyzed in this study were from two villages in the Tibet 
Autonomous Region, China.  Half of these samples were from the town of Zhaxizhong, 
Dingri (9 females and 16 males), located at the foot of mountain Jomoglangma (4300 
meters in altitude).  The remainder were from the town of Zaren, Nachu (13 females and 
12 males), which is approximately 250 miles northwest of Lhasa (at 4,600 m).  All 
participants gave a self-report of at least three generations living in the sampling site, and 
provided informed consent for this study. 
 
The peripheral venous blood samples of 50 ethnic Tibetans was collected using the 
pipelines dictated by the institutional review board of the Beijing Genomics Institute 
(BGI).  In all subjects, oxygen saturation of blood was measured by Fingertip Oximeter: 
CMS-50DL twice with thirty minutes of interval.  Blood testing was done using standard 
protocols for the BC-3000 Plus Auto Hematology Analyzer (MINDRAY):  erythrocyte 
quantities were assessed by automated cell counting, and hemoglobin was quantified by 
spectrophotometry following hemolysis (using the SFT method).  Comprehensive 
medical examinations were also conducted for all individuals during sampling to ensure 
that only healthy subjects were included in our analysis.  All samples and measurements 
were obtained in the home village of each individual. 
 
DNA extraction,  library construction, exome capture and sequencing 
 
Genomic DNA was extracted from the blood samples by the use of QIAamp DNA Blood 
Mini Kit, according to protocol provided by QIAGEN.  Following the manufacturer's 
protocol, genomic DNA of each individual was hybridized with NimbleGen 2.1M-probe 
sequence capture array (S1) (http://www.nimblegen.com/products/seqcap/) to enrich the 
exonic DNA in each library.  The array is able to capture 18,654 (92%) of the 20,091 
genes that has been deposited in Consensus Coding Sequence Region database 
(http://www.ncbi.nlm.nih.gov/projects/CCDS/).  
 
First, DNA was randomly fragmented by nebulization to an average size of 500bp, and a 
pair of linkers was ligated to both ends of the resulting fragments. The linker-ligated 
DNA products were then hybridized to the capture array following NimbleGen's 
protocol, after which the exome-enriched DNA fragments were eluted from the array and 
amplified by ligation-mediated PCR,  and non-hybridized fragments were then washed 
out.   
 
Second, the captured DNA fragments were concatenated by DNA ligase and re-sheared 
to 200bp on average. Thus, we constructed a secondary library from the primary captured 
DNA library, which enabled the Illumina Genome Analyzer II platform, as previously 
described (S2), with adaptations. We performed sequencing for each captured library 
independently to ensure each sample had at least ~6-fold coverage. Raw image files were 



processed by Illumina Pipeline (version 1.3.4) for base-calling with default parameters 
and the sequences of each individual were generated as 75bp reads. 
 
Read Mapping and Data quality analysis 
 
Linker or adapter sequences that may be introduced into raw reads during the experiment 
process were masked before mapping.  More concretely, the small portion of adapter and 
linker sequences within reads was identified by using a local dynamic programming 
algorithm, and reads that had more than 12 bp overlap with adapter or linker sequences 
were identified as contaminated reads.  The contaminated sequence in reads was then 
discarded and the remaining sequence was retained.  SOAPaligner (S3, S4) was used to 
align the clean reads to the NCBI human genome reference assembly (build 36.3), with a 
maximum of two mismatches, and parameters set as -a -D -o -r 1 -t -c -f 4.  Reads that 
aligned to the designed target region were collected for SNP identification and 
subsequent analysis.  To evaluate exon capture efficiency, the proportions of reads 
mapping to target regions and to their flanking regions (within 500 bp) were calculated 
for each individual.  35.5% of reads mapped to target regions (Table S1) and 68.1% of 
reads were within 500bp of a target region.  
 
SNP calling and estimation of sample allele frequencies 
 
Calculation of genotype likelihoods 
 
Likelihoods of genotypes of each individual at every genomic location were calculated by 
SOAPsnp (S4).  The observed data in site k of a particular read, dk, contains three 
elements: (1) ok: observed allele type; (2) qk: quality score; (3) ck: sequencing cycle 
(coordinate on read) ; and (4) tk, the tk-th observation of the same allele from reads with 
the same mapping location. All three elements in each read are used for the calculation of 
likelihoods, and sequencing errors are assumed to be independent. The likelihood for 
genotype S in site k is then 

 
p(dk | S) = p(ok, qk, ck| S) = p(ok, ck | S, qk)p(qk | S) 
 

We first estimate a four-dimensional matrix of p(ok, ck | S, qk) on a grid of values of ok, qk, 
and ck for all possible genotypes, based on all of our alignments, using observed 
mismatch rates. Doing this, we can in effect recalibrate the quality score taking 
sequencing cycle into account. 
 
p(qk|S) is the probability of an allele S to have an observation with quality score qk. The 
quality distribution of each assumed allele is unknown. Here, we assumed that the 
distributions from A, C, G, and T are the same; then p(qk|S) is the function of qk only. 
 
The same alleles from reads with the same mapping locations were ordered by the 
sequencing quality scores from low to high. An empirical treatment was used to reduce 
the quality of the tk-th observation: 
 



 

� 

q' k = θ tkqk  
 
Here, θ is called a dependency coefficient. The adjusted quality score q’k, instead of the 
original qk, was used in the likelihood matrix. θ is set between 0 and 1. Specifically, θ = 0 
means the completely dependent model, and θ = 1 is the completely independent model.  
A detailed description if this method is provided elsewhere (S4). 
 
Allele frequency estimation 
 
Population genetic inferences based on called (inferred) SNPs can lead to serious biases 
and possibly false inferences if the coverage is not so large that the genotypes are known 
with absolute certainty for each individual.  We have therefore developed a series of 
statistical techniques that can take uncertainty in genotype calls and allele frequency 
estimation into account. 
 
To call SNPs and to estimate the allele frequencies in the sample, we use a Bayesian 
approach which is applied jointly to all individuals.  SNP calling based on the joint 
information from all individuals should be more accurate than SNP calling based on 
independent analyses of single individuals.  The same algorithm which estimates the 
posterior probability that a SNP is variable can also be used to estimate the frequency on 
an allele.  We will first explain how the algorithm works for a single population.  We 
then subsequently describe how the algorithm works for multiple populations.   
 
Let pj be the posterior probability that a di-allelic SNP has MAF of j/2k, where k is the 
sample size (number of individuals). We assume that a fraction, pvar, of nucleotide sites 
are variable in the population (not the sample!).  Let the observed sequencing data for the 
SNP be Xi, and let S = (S1, S2,…,Sk) be a sample configuration where , 

. Also, assume that the MAF in the population is p, 
and let be an indicator function which returns 1 if the sample MAF in 
configuration S is j/2k.  pj is then, for 0<i<k,  given by 
 

, 

 
and 

, 

 



for i = 0.  p(Xi | Si) is given (up to a scaling factor) by the genotype likelihoods which can 
be calculated as described above.   can be calculated assuming Hardy-Weinberg 
equilibrium if the allele frequency p is know.  Our algorithm, therefore, proceeds by first 
estimating p from the raw sequencing reads.  The entire calculation can be done very fast 
using a dynamic programming algorithm for summing over all elements in . In the 
following we give a detailed description of the algorithmic details of the inference 
method:   We first estimate allele frequencies in each site, and we then estimate the Site 
Frequency Spectrum (SFS). 
 
Estimating allele frequencies from reads in one site 
 
Let the individuals be I1, I2,…,Ik, i.e. we assume k individuals. 
(1) For each site in each individual, eliminate all reads with Q score < 20. Determine 
which two nucleotides are most common among {A, C, T, G} and let the set of these 
nucleotides be B, i.e. if there are 400 A’s, 42, C’s, 13 T’s and 9 G’s, then B = {A, C}. 
Then eliminate all reads that are not elements of B  
(2) For i=1 to k 

Let ni be the number of reads of the minor allele in B in individual Ii.  Let the total 
number of reads in B in individual Ii be niT. Calculate  

pi = 

� 

ni − eniT
niT 1− 2e( )

 

This is an error corrected estimate of the allele frequency in individual Ii, obtained 
as the solution for pi to the equation 

� 

ni = piniT 1− e( ) + (niT − piniT )e. The 
parameter e is the error rate and is considered a fixed parameter, here assumed to 

be e = 0.005.  Also calculate 

� 

wi = 2niT
niT +1

, the inverse of the variance of pi (up to a 

scalar). 
 (3) The estimate of the MAF is then calculated as  
 

, , 

 
 
Estimating Sample Allele Frequencies 
 
Likelihood values for all G ∈ {AA, AC, AG,AT,…,TT} have been calculated using the 
previously described algorithm. .  We are interested in estimating the posterior 
probability that the minor allele frequency exists in a frequency j in the sample of 2k 
chromosomes. We assume that the prior probabilities of the different genotypes are given 
by the probabilities predicted under Hardy-Weinberg equilibrium with a MAF of 

� 

ˆ p .  This 
corresponds to using an empirical Bayesian approach where the shared parameter (

� 

ˆ p ) 
first is estimated and then provides a prior for each individual.  We will denote the minor 
allele by ‘A’ and the major by ‘a’.  Then a dynamic programming algorithm for 
calculating the posterior probability is given by (for each site): 



 
If 

� 

ˆ p  = 0, set p0 = 1 and pj = 0 for all j > 0. 
Else 
 (1) Set hj = 0,  j = 3,4,…,2k . 

(2) For i=1 to k 

Set PAA,= 

� 

gAA ,i( ˆ p 2(1− F) + ˆ p F) , PAa = 

� 

cfigAa,i2(1− ˆ p ) ˆ p (1− F)  and Paa = 

� 

gaa,i(1− ˆ p )2(1− F) + (1− ˆ p )F . 
Here gG,i is the previously calculated likelihood for genotype G in 
individual i..  The parameter Fi is the inbreeding coefficient and needs to 
be obtained prior to analyses jointly for all sites We will assume here that 
F = 0.  
 
If i=1  

Set 

� 

h0 = Paa   
Set 

� 

h1 = PAa   
Set 

� 

h2 = PAA   
Otherwise 
 For j = 2i to 2 (count backwards) 

Set 

� 

h j =  PAAh j−2 + PAah j−1 +Paah j    
Set 

� 

h1 = Paah1 + PAah0  
Set 

� 

h0 =  Paah0  
 

(3) Set  

� 

π j =
h j pvar

pvar hr + (1− pvar ) gaa
i=1

k

∏
r
∑

, j =1,2,..,2k  

 

 
The estimated values of pi, can then be used for population genetic inferences, either by 
averaging over pi, or by using a Maximum a posteriori Probability (MAP) estimate of the 
sample allele frequency.   Notice that this procedure explicitly takes into account 
differences in sequencing depths between samples when estimating allele frequencies, 
and quantifies the uncertainty in these estimates. Likewise, SNP calling can proceed in a 
probabilistic fashion by choosing a cut-off for p0 (p2k is so close to zero that it can be 
ignored because the definition of p as the minor allele frequency). For example, if we 
wish to call sites with a probability >95% of being SNPs, we would select all sites with 
p0  < 0.05.   
 
 
 



Extension to multiple populations 
 
We here discuss the extension to two populations, in this case Han (H) and Tibetans (T).  
We will use a single estimate of p, calculated as previously described for both 
populations.  The main motivation for doing this is to avoid situations in which = 0 for 
one population and > 0 in another population.  Another justification for using the 
shared estimate is that we would rather be conservative with regards to inferences of 
differences in sample allele frequencies between populations.  We therefore prefer to use 
the same prior for both populations. 
 
The joint posterior probability of a site having allele frequency i in H and j in T, is then 
given by 
 

� 

π ij =
h j

T hi
H pvar

pvar
r
∑ hr

T hs
H + (1− pvar )( gaa

m,T

m=1

Tk

∏ )
s
∑ ( gaa

m,H

m=1

Hk

∏ )
 

where Tk is the number of Tibetan individuals and Hk is the number of Han individuals.  
All functions sub- or super-scripted with either T or H are calculated as previously 
described marginally for population T and H, respectively.  A SNP is then called if p00 is 
less than some specified cut-off. 
 
Population genetic inferences 
 
Population genetic statistics that do not use linkage/linkage disequilibrium information 
into account are all functions of Site-Frequency-Spectrum (SFS).  In our case, an estimate 
of the joint SFS for Tibetans and Han is giving by the matrix p = {pij}.  Statistic such as 
FST, the number of segregating sites, the average number of pairwise differences, etc, can 
be calculated directly from p for each gene.  This can be done based on the MAP estimate 
for called SNPs (i.e. SNPs with p00 less than some specified cut-off), or it can be done by 
summing over the values in p, thereby taking uncertainty in both SNP calling and 
inference of allele frequency into account.   For example, the number of segregating sites 

in the Tibetan population in a gene would be calculated as  

� 

1− π i0
i=1

2Tk

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

sites
∑  and the total 

number of segregating sites in a gene would be calculated as .  Likewise, the 

average number of pairwise differences per site can be calculated as  
 

� 

j(2Tk − j)π ij

2Tk
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ j=1

2Tk

∑
i=1

2Hk

∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ sites

∑

1− π i0
i=1

2Hk

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

sites
∑

. 



Any other statistic calculated on a per site basis, which normally for a single variable site 
with sample allele frequency i in H and j in T is given by f(i, j), can similarly be 
calculated as  
 

� 

f (i, j)π ij
j=1

2Tk

∑
i=1

2Hk

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

sites
∑

1− π i0
i=1

2Hk

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

sites
∑

. 

 
Our inference of natural selection is primarily based on a new statistic aimed at detecting 
strong changes in allele in one population.  Pairwise differences in allele frequencies can 
be quantified using FST.  We use the FST estimator of Reynolds et al. (S5), based on the 
MAP estimates for SNP frequencies where sites are considered if they satisfy  (1.0-p00 ) > 
0.01. We also excluded sites for which the minor allele has MAP frequency estimate of 0 
in at least two populations or for which no data was available for the Danish population. .  
We then use the classical transformation by Cavalli-Sforza (S6),  
 

T = - log(1 – FST) 
 
to obtain estimates of the population divergence time T in units scaled by the population 
size.  For each RefSeq gene, we calculate this value between the Tibetans and Han 
populations (TTH), and between these populations and a Danish population (TTD and THD), 
for which data obtained using similar techniques was previously published for 200 
individuals, providing very accurate estimates of allele frequencies.  The length of the 
branch leading to the Tibetan population since the divergence from Han, is then obtained 
as 
 

� 

PBS = TTH + TTD −T HD

2
 

 
A population’s PBS value represents the amount of allele frequency change at a given 
locus in the history of this population (since its divergence from the other two 
populations).  This approach is similar to the “locus-specific branch lengths” statistic 
used by Shriver et al. (S7), except that by using the above log-transformation, we obtain 
additive distances that place branches of different magnitudes on the same scale.  This 
statistic should be very powerful to detect selection.  It should have power, for example 
to detect incomplete selective sweeps, a type of selection that is highly relevant here and 
which most other statistics based on the SFS have little power to detect. 
 
Evaluation of the PBS statistic 
 
Recent simulation studies have shown that FST-based statistics (S8) have more power to 
detect recent adaptation when selection is acting on standing variation.  Because of the 
very short divergence time between Han and Tibetan individuals, and the fact that the 
waiting time to a new mutation might be large, we expect much local adaptation to be 



driven by selection acting on standing variation rather than de novo mutations.  The test 
statistic we are using is, therefore, a simple transformation of FST designed to take 
advantage of an outgroup and to identify Tibetan specific selection. 
 
To evaluate if this approach also has power to detect selection on de novo mutations, we 
performed a small scale simulation study. Using the Wright-Fisher model simulator 
sfscode (S9), we simulated 3 populations (representing Danes, Tibetans and Han) 
introducing one new selected mutation in the Tibetan population at the time of the split of 
Han and Tibetans.  We simulated data sets under a range of scaled selection coefficient,  
(g = 2Ns, where s is the selection coefficient and N is the population size), assuming the 
population size  N = 1000 for each of the 3 populations, and we assumed divergence 
times between Danes and Asians, and Han and Tibet, of 1680 and 120 generations, 
respectively.  The locus size was set to 1kb, the population mutation rate and the 
population recombination rate were set to 0.001 per site.  No further complications to the 
demographic model were used in this analysis, because these simulations were only used 
for evaluating the power of the PBS statistic, and not to generate P values for empirical 
observations.   
 
Often the selected mutation in a simulation will be lost after a few generations due to the 
effect of genetic drift.  However, as we were interested in evaluating the power under a 
complete or incomplete selective sweep, we only examined simulation replicates where 
the selected mutation was not lost from the Tibetan population, effectively conditioning 
on the presence of the allele.  To determine critical values, we ran neutral simulations (no 
selected mutation was introduced).  The power was then calculated by comparing the 
simulations with selection to simulations without selection.  For comparison, we also 
calculated Tajima’s D (S10) for each simulation replicate and evaluated the power of 
Tajima’s D based on the same simulations.  Results indicated that PBS has strong power 
to detect a recent selective sweep (Figure S3).  The power of Tajima’s D, in contrast, is 
quite low in this setting, potentially due to low numbers of segregating sites.  Because our 
exonic data contains relatively few SNPs per gene, the high power of PBS under these 
conditions represents an important advantage for our analysis.  A similar set of 
simulations were also conducted with the population recombination rate elevated to 0.01, 
in order to simulate a locus that is ten times longer, but with only the same number of 
sampled sites (analogous to our exonic data).  Results were qualitatively similar:  PBS 
retained high power in these simulations, while Tajima’s D had modestly higher power 
than it had with shorter loci (data not shown).   
 
Demographic estimation and neutral simulations 
 
For the inference of demographic parameters we used the unfolded site frequency 
spectrum (based on ancestral alleles shared by chimpanzee and macaque  genomes) of the 
synonymous sites (61,347 SNPs) in the Han and Tibetan samples. Parameter inference 
was carried out with the software package ∂a∂i (version 1.2.3) (S11).  We took ancestral 
population events such as the out-of-Africa bottleneck from the model inferred by 
Gutenkunst et al. (S11), but we estimated parameters pertaining to the two Asian samples 
studied here.  Models were compared via Akaike and Bayesian Information Criteria; the 



best fitting-model is shown in Figure S2.  As further detailed in the legend of this figure, 
this model involves a population split 2,750 years ago.  The Han size is initially small but 
grows larger, while the Tibetan size is initially large but contracts with time.  Migration 
occurs from the Tibetan sample to the Han sample, but 20% of the Tibetan gene pool is 
replaced by Han admixture at the present time.  A wide variety of models were tested, but 
the model shown in Figure S2 fit better, for example, than the same model with 
symmetric migration, and much better than a similar model lacking the ancestral African 
time and growth estimates of Gutenkunst et al. (S11).  The model of European history 
from Gutenkunst et al. (S11) was used for the history of the Danish sample in the 
simulations described below. 
 
Neutral simulations under the model estimated above were used to calculate P values for 
the PBS values inferred for each gene in the ethnic Tibetan sample.  Simulations were run 
using the program ms (S12) with demographic parameters from the above model and 
recombination rates drawn randomly from the map of McVean et al. (S13).  Gene lengths 
for simulations were sampled randomly from the lengths of all human genes.  One 
million simulations were performed for each number of SNPs (for 1 to 15 SNPs) or using 
5-SNP bins (from 20 to 40 SNPs) and conservatively comparing genes to simulations 
with slightly fewer SNPs (e.g. comparing a gene with 28 SNPs to simulations with 25 
SNPs).  P values were defined simply as the proportion of simulated replicates yielding a 
higher PBS value than empirically observed for a particular gene. 
 
Genotyping and association testing for a candidate SNP at EPAS1 
 
The SNP at EPAS1 showing the most dramatic frequency difference between ethnic 
Tibetan and Han samples (located at position 46441523 on chromosome 2) was 
genotyped in a larger sample of 366 ethnic Tibetans (from the same localities, and 
collected via the same protocols, as described above.  Genotyping was done by use of the 
mass-spectrometry-based MassArray platform of Sequenom (San Diego, CA, USA).  
PCR and extension primers were designed using Assay Design v3.1 (Sequenom, San 
Diego, CA, USA).  Forward and reverse PCR primers were 
ACGTTGGATGTCCATGTCTGACCCTTCCAC and 
ACGTTGGATGTATTGTGAGGAGGGCAGTTG.  Genotyping primers had the 
unextended sequence GACCCTTCCACGCCTGT, extending to a “C” or “G” for the 
alternate alleles.   
 
PCR reactions were performed in 5µl PCR cocktail mix, consisting of 1µl DNA template 
(10-25 ng/µl), 1 × PCR Buffer (including 2 mmol/L MgCl2), 2 mmol/L MgCl2, 500 
µmol/L dNTP mix, 0.1pmol/µl of each PCR primer, and 0.5U Hotstar Taq (Roche).  PCR 
conditions were as follows: incubation at 94°C for 15 min, followed by 45 cycles of 20 
sec at 94°C, 30 sec at 56°C, 1 min at 72°C, and a final extension of 3 min at 72°C.  
Shrimp alkaline phosphatase treatment was performed to dephosphorylate unincorporated 
dNTPs under the following conditions: 37°C for 40 min, 85°C for 5 min, cooling to 4°C. 
 
The iPLEX primer extension reaction was performed using the iPLEX cocktail mix 
(Sequenom, San Diego, CA, USA), which contains buffer, iPLEX termination mix, 



iPLEX enzyme and extension primers, under the following conditions:  the DNA sample 
is denatured at 94°C, Strands are annealed at 52°C for 5 seconds and extended at 80°C 
for 5 seconds ,The annealing and extension cycle is repeated four more times for a total 
of five cycles and then looped back to a 94°C denaturing step for 5 seconds and then 
enters the 5 cycle annealing and extension loop again. The five annealing and extension 
steps with the single denaturing step are repeated an additional 39 times for a total of 40. 
A final extension is done at 72°C for three minutes and then the sample is cooled to 4°C. 
Six milligram clean resin was added into 384-well PCR plate to desalt the iPLEX 
extension products before mass spectrometric analysis. An average of 3-10 nl products 
were dispensed onto a 384-element SpectroCHIP bioarray (Sequenom) by a 
nanodispenser. MassARRAY Workstation version 3.4 software (Sequenom) was used to 
process and analyze iPLEX SpectroCHIP bioarrays. Positive and negative control 
samples were run at each step and on each chip. 
 
Association testing was performed using simple linear regressions of the measurements 
oxygen saturation, erythrocyte count, and hemoglobin concentration on the genotypes of 
the focal SNP at EPAS1.  The genotypes were encoded as numerical values 0, 1, 2 
corresponding to homozygous, heterozygous and homozygous (for the other allele) 
genotypes.  We used the model E[Y|Xi] = ß0 + ß1Xi and tested whether the slope (ß1) is 
different from zero. Here Y is the quantitative trait and Xi takes the values {0, 1, 2} for 
the genotypes at SNP site i.  The regressions were performed for the full sample of 366 
individuals, for each of the two villages separately (Table S5).  The analysis made use of 
the linear regression function from the R programming language and F-test P-values were 
recorded.  Genotypes at the focal EPAS1 SNP were uncorrelated with gender.  To further 
control for gender-related phenotypic differences, we also performed association testing 
in females only, and in males only.  Results were very similar to the overall results:  
associations for erythrocyte count and hemoglobin quantity remained statistically 
significant or marginally significant, and associations for oxygen saturation did not 
approach statistical significance.  Since population stratification may be an issue, we 
calculated the inflation factor from non-associated SNPs (S14) in the full sample, and 
used this inflation factor to compute EPAS1 association P-values corrected for population 
stratification for our most differentiated SNP.  The results remained statistically 
significant.  The phenotypic associations observed for focal SNP at EPAS1 were also 
compared against 48 additional SNPs from around the genome, genotyped in the same 
large sample.  The P value observed for EPAS1 was a clear outlier from this set (Fig. S5).  
Positions for these “genomic control” SNPs were as follows:  chr1-12491677, chr1-
27151140, chr1-45846284, chr1-52675081, chr1-53448299, chr1-65630810, chr1-
110567989, chr1-154829060, chr1-194962365, chr1-201404410, chr2-43955048, chr2-
71215412, chr2-178202419, chr2-218391384, chr3-19936334, chr3-57113459, chr4-
77284346, chr5-35912031, chr5-96357847, chr5-172274635, chr5-172274640, chr6-
25881584, chr6-26164595, chr6-133146813, chr6-151715282, chr7-6032976, chr8-
101796892, chr8-105430170, chr10-29931167, chr11-1934128, chr11-3642019, chr11-
61767439, chr11-74793531, chr11-89541802, chr11-106702850, chr12-9208040, chr14-
64267910, chr17-39581008, chr17-64702135, chr19-1005255, chr19-1776926, chr19-
6864707, chr19-8097184, chr19-46314107, chr19-59665806, chr20-33678648, chr20-
36217869, chr22-40816669.



Figure S1. Alternative site frequency spectra (SFS) for Tibetan exome data.  
a) Comparison between AFS of known (blue; in dbSNP v129) and novel SNPs (red).  
b) Comparison between AFS of empirical data and the estimated demography model.  
a)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
b)   

 



Figure S2.  Illustration of best-fitting demographic model according to Akaike 
Information Criterion and Bayesian Information Criterion.  Parameters in red were 
estimated; parameters in black were fixed according to the model of Gutenkunst et al. 
(2009).  Estimates for inferred parameters were as follows:  The ancestral non-African 
population grows to a size of NAS = 7360 at time T1 = 42,955 years ago (all time estimates 
assume 25 years per generation).  At time T2 = 2,750 years ago, the Han and Tibetan 
lineages split, with the Han population having initial size NH = 288 and the Tibetan 
population having initial size NT = 22,642.  At time T3 = 1,973 years ago, the Tibetan 
population begins exponential decline to a final size of NTF = 1,270.  At time T4 = 1,813 
years ago, the Han population begins exponential growth to a final size of NHF = 12,850, 
and migration from the Tibetan to the Han population occurs at rate mHT = 0.00526.  
Finally, at the present time, a proportion FTH = 0.2 of the Tibetan gene pool is drawn 
from the Han sample (instantaneous admixture). 

 



Figure S3.  Power of the PBS and Tajima’s D statistics to detect a recent selective sweep, 
depending on the strength of selection (X-axis).  Simulations were conducted as 
described in the Supplemental Text. 



Figure S4.  Distribution of loge p-values for 48 genomic control SNPs regressed against 
erythrocyte count, and for the genotyped EPAS1 SNP (red star) 
 



Figure S5.  Linked pairs or groups of genes that appear on the list of most extreme PBS 
values (Table 2) are shown in green.  Nearby candidate genes are marked in red. 
 

 
 



Table S1. Data production by individual sample 
 

Sample ID 
Raw 
reads 

(x1e+6) 

Raw data 
yield (Mb) 

Reads mapped to 
genome  (x1e+6) 

Reads mapped to 
target region  

(x1e+6) 

Data mapped 
to target region 

(Mb) 

Mean depth 
of target 
region 

Coverage of 
target region 

(%) 

Average 
read length 

(bp) 

Rate of 
nucleotide 

mismatch (%) 

DR-F11 44.75 3,356 13.7 4.08 201.92 5.92 87.01 62.07 2.04 
DR-F14 35.51 2,663 31.38 11.15 614.64 18.02 95.25 69.93 0.96 
DR-F17 38.23 2,867 32.23 11.6 638.52 18.72 95.26 70.32 0.9 
DR-F18 47.41 3,556 18.88 6.48 316.87 9.29 90.13 61.47 2.17 
DR-F19 42.30 3,172 12.37 4.02 199.88 5.86 88.05 62.32 2.03 
DR-F35 44.19 3,314 29.94 11.92 596.22 17.48 97.55 61.43 1.29 
DR-F40 33.01 2,476 29.07 10.4 557.68 16.35 96.37 69.78 1.08 
DR-F6 31.84 2,388 28.48 10.08 556.31 16.31 94.94 69.98 0.96 
DR-F8 46.18 3,463 19.08 6.7 328.47 9.63 92.75 61.55 2.24 

DR-M10 39.01 2,926 34.29 12.85 704.01 20.64 95.97 69.76 1 
DR-M19 40.06 2,404 34.51 8.06 398.73 11.69 96.21 61.5 0.76 
DR-M22 41.24 1,526 21.79 9.54 440.34 12.91 97.09 56.16 1.26 
DR-M23 21.06 1,685 17.91 7.34 424.31 12.44 95.1 73.92 0.89 
DR-M24 40.76 3,057 36.47 14.18 785.87 23.04 96.05 70.68 0.85 
DR-M28 40.58 3,043 27.67 11.63 578.14 16.95 97.89 60.69 1.21 
DR-M30 41.19 3,089 28.34 11.82 587.35 17.22 97.95 60.64 1.21 
DR-M31 36.41 2,731 31.49 10.95 587.69 17.23 95.51 69.66 1.1 
DR-M38 40.10 3,007 25.97 12.1 642.27 18.83 96.9 65.67 1.1 
DR-M42 40.14 3,010 26.38 10.77 536.19 15.72 97.39 60.96 1.28 
DR-M43 40.80 3,060 25.85 10.52 526.3 15.43 97.4 61.27 1.1 
DR-M44 40.91 1,514 22.67 9.41 435.23 12.76 97.22 56.28 1.1 
DR-M46 37.95 2,846 16.9 7.47 372.13 10.91 96.55 60.77 1.18 
DR-M7 45.35 3,401 17.43 5.88 298.79 8.76 90.37 64.51 1.84 
DR-M8 46.58 2,795 39.98 11.85 597.59 17.52 97.14 62.83 0.72 
DR-M9 41.28 3,096 27.96 11.49 573.37 16.81 97.63 60.92 1.22 
NQ-F15 66.40 4,980 47.15 15.59 819.98 24.04 96.01 66.33 1.15 
NQ-F16 38.01 2,851 30.67 10.97 603.04 17.68 96.71 69.86 0.99 



NQ-F17 65.31 4,898 44.84 13.82 717.99 21.05 96.92 65.33 1.21 
NQ-F19 70.48 3,947 48.48 15.33 819.98 24.04 95.38 67.93 1.17 
NQ-F20 41.22 1,525 22.94 8.88 411.69 12.07 97.14 56.51 1.04 
NQ-F24 62.88 4,716 49.48 18.6 977.9 28.67 97.68 65.93 1.52 
NQ-F25 64.36 4,827 45.8 16.34 845.22 24.78 97.15 65.19 1.26 
NQ-F26 59.85 4,489 48.25 18.59 978.24 28.68 97.53 65.85 1.56 
NQ-F32 67.11 5,033 47.13 14.32 753.46 22.09 94.68 66.49 1.13 
NQ-F34 46.40 3,480 15.25 4.97 242.51 7.11 90.47 61.21 2.11 
NQ-F35 57.04 4,278 43.41 15.01 794.74 23.3 97.61 66.08 1.14 
NQ-F36 58.83 4,412 39.95 13.27 689.68 20.22 97.27 64.98 1.29 
NQ-F7 58.93 4,420 40.16 12.39 647.73 18.99 97.44 65.41 1.23 

NQ-M12 48.98 3,674 19.23 5.8 294.7 8.64 89.62 64.17 1.76 
NQ-M13 39.68 2,976 33.82 13.64 758.92 22.25 92.71 70.03 0.99 
NQ-M20 64.05 4,803 47.25 16.55 875.91 25.68 96.39 66.44 1.3 
NQ-M21 46.41 3,481 18.97 5.47 268.1 7.86 87.6 61.04 2.15 
NQ-M26 41.56 3,117 28.48 10.24 524.59 15.38 96.27 64.15 1.58 
NQ-M31 39.38 1,457 17.59 7.51 362.24 10.62 96.66 59.19 0.98 
NQ-M32 62.55 4,691 49.82 19.97 1043.05 30.58 97.75 65.45 1.59 
NQ-M33 58.68 4,401 47.42 15.04 788.25 23.11 97.08 65.29 1.41 
NQ-M35 55.80 4,185 47.4 17.67 978.92 28.7 97.06 70.58 0.87 
NQ-M5 59.33 4,450 46.85 17.76 925.37 27.13 97.87 64.84 1.61 
NQ-M7 59.36 4,452 47.69 15.65 816.22 23.93 96.62 65.26 1.44 
NQ-M9 63.90 3,578 43.68 10.55 551.2 16.16 96.73 65.39 1.25 

 
 



Table S2.  Variation detection from Tibetan exomes 
 
SNP discovery for functional classes of sites 
 

Known Novel Total Genomic features 
# of SNPs # of SNPs # of SNPs 

 synonymous   14,439  12,312 26,751 
 nonsynonymous  11,421 26,634 38,055 

CDS 

 nonsense  73 541 614 
Intron 14,547 23,623 38,170 
5'UTR 848 1,129 1,977 
3'UTR 895 1,100 1,995 
Intergenic 15 16 31 
 
 



Table S3.  Additional statistics for the 30 genes with highest Tibetan PBS values. 
 

 

Gene refseq ID 
 S  

Tibetan     
 ∏  

Tibetan 
 S  

Han     
  ∏   

Han     TTH            TTD            THD           

EPAS1 NM_001430 12.64 0.10 8.86 0.17 0.57 0.70 0.24 

C1orf124 NM_032018 3.37 0.16 4.15 0.27 0.14 0.53 0.12 
DISC1 NM_018662 18.31 0.13 11.99 0.16 0.16 0.49 0.15 
ATP6V1E2 NM_080653 1.02 0.24 3.00 0.19 0.12 0.50 0.12 
SPP1 NM_001040060 6.15 0.18 4.17 0.28 0.13 0.59 0.25 
PKLR NM_000298 8.91 0.10 5.04 0.20 0.06 0.85 0.45 
C4orf7 NM_152997 3.43 0.24 2.11 0.10 0.20 0.27 0.01 
PSME2 NM_002818 4.15 0.12 3.79 0.17 0.09 0.56 0.21 
OR10X1 NM_001004477 5.11 0.21 5.04 0.37 0.10 0.49 0.15 
FAM9C NM_174901 4.00 0.07 2.22 0.21 0.14 0.36 0.07 
LRRC3B NM_052953 3.81 0.14 1.08 0.23 0.19 0.25 0.00 
KRTAP21-2 NM_181617 3.00 0.45 3.11 0.22 0.26 0.23 0.07 
HIST1H2BE NM_003523 2.39 0.09 2.41 0.20 0.09 0.62 0.29 
TTLL3 NM_001025930 7.84 0.08 6.38 0.19 0.09 0.56 0.24 
HIST1H4B NM_003544 3.71 0.15 5.02 0.13 0.12 0.43 0.14 
ACVR1B NM_004302 4.09 0.19 3.81 0.19 0.13 0.29 0.03 
FXYD6 NM_022003 2.07 0.20 2.01 0.07 0.18 0.24 0.04 
NAGLU NM_000263 5.11 0.13 3.60 0.10 0.16 0.23 0.02 
MDH1B NM_001039845 6.23 0.19 6.36 0.20 0.07 0.61 0.31 
OR6Y1 NM_001005189 3.10 0.32 2.08 0.46 0.10 0.34 0.08 
HBB NM_000518 2.32 0.39 2.14 0.47 0.08 0.46 0.17 
OTX1 NM_014562 3.57 0.18 2.38 0.18 0.12 0.30 0.05 
MBNL1 NM_207292 6.96 0.17 3.75 0.08 0.18 0.18 0.01 
IFI27L1 NM_206949 3.14 0.25 2.55 0.11 0.18 0.18 0.01 
C18orf55 NM_014177 7.95 0.17 4.68 0.11 0.15 0.24 0.03 
RFX3 NM_134428 6.24 0.16 4.47 0.07 0.20 0.16 0.00 
HBG2 NM_000184 2.47 0.17 1.46 0.06 0.17 0.17 0.00 
FANCA NM_000135 40.40 0.08 33.13 0.23 0.11 0.62 0.39 
HIST1H3C NM_003531 2.47 0.23 2.05 0.35 0.05 0.72 0.43 

TMEM206 NM_018252 2.22 0.16 0.68 0.04 0.17 0.16 0.00 



Table S4:  Population frequencies and mean phenotypes at the focal EPAS1 SNP 
 

 
Allele/genotype 

Tibetan 
frequency Han frequency 

Danish 
frequency 

mean 
hemoglobin 

concentration 

mean 
erythrocyte 

count 
mean oxygen 

saturation 
C 0.13 0.9125 1 n/a n/a n/a 
G 0.87 0.0875 0 n/a n/a n/a 

CC 10 n/a n/a 178 5.3 87.5 
CG 84 n/a n/a 178.9 5.6 86.68 
GG 272 n/a n/a 167.5 5.2 86.42 

 
 



Table S5.  Association testing P values for the focal EPAS1 SNP, for the full sample and for each village separately (Dingri and 
Naqu).  For phenotypes with significant P values, regression coefficients (ß1), standard errors, and sample sizes (n) for the linear 
regressions are also given. 
 

 Sample SaO2 P Erythrocyte P Erythrocyte ß1 Erythrocyte SE Erythrocyte n Hemoglobin P Hemoglobin ß1 Hemoglobin SE Hemoglobin n 

All Tibetans 0.726 0.00145 -0.236 0.0734 314 0.00127 -9.23 2.84 358 

Dingri only 0.805 0.00188 -0.284 0.0901 198 0.00458 -9.14 3.19 240 

Naqu only 0.467 0.0609 -0.214 0.113 116 0.00166 -13.6 4.21 118 



Table S6.  Population genetic statistics for selected a priori candidate genes for altitude adaptation in the Tibetan sample. 
 

Gene   refseq ID        Description 
 S 

Tibetan     
 ∏  

Tibetan  S Han       ∏  Han      TTH            TTD            THD           
PBS 

Tibetan 

NOS3 NM_000603 nitric oxide synthase 3 (endothelial 
cell) 26.07 3.37 17.76 3.22 0.01 0.09 0.06 0.02 

HIF1A NM_181054 hypoxia-inducible factor 1, alpha 
subunit 13.65 0.73 6.13 0.25 0.02 0.01 0.02 0.01 

MB NM_203377 myoglobin 6.44 2.94 6.27 2.61 0.02 0.04 0.09 -0.02 

ACE NM_000789 angiotensin I converting enzyme 
isoform 1 23.00 3.94 18.15 3.06 0.02 0.08 0.18 -0.04 

CYP11B2 NM_000498 cytochrome P450, subfamily XIB 
polypeptide 2 13.43 2.83 12.44 2.47 0.03 0.14 0.31 -0.07 
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