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states of the different loci are statistically dependent
owing to genetic linkage, and for each locus, the
allelic states of different haplotypes are statistically
dependent owing to their shared ancestry. These
dependencies are the result of the unique history of
mutation, recombination and COALESCENCE of lineages
in the ancestry of the sample. These facts must be
incorporated if the data are to be analysed in a coher-
ent statistical framework. Heuristic methods, such as
those borrowed from phylogenetics, do not fully take
into account the uncertainty caused by the inherent
randomness of evolution, and as a result can lead to
pronounced overinterpretations of the data.

One solution is to model the past using a suitable
stochastic model. The STOCHASTIC PROCESS known as ‘the
coalescent’ is a natural extension of classical population-
genetics models and is very well suited for this purpose.
It is relatively simple and can be adapted to accommo-
date a wide variety of biological assumptions. In this
review, we describe the coalescent and how it can be
used to analyse data. Surveys of recent developments in
this field are available elsewhere3–8. We begin by focusing
on why history must be considered when analysing
polymorphism data.

Importance of history
Any model of DNA polymorphism in a population
must include mutation — without which there would

In their classic experiment, Luria and Delbrück1

observed independent runs of the evolution of phage
resistance in bacterial populations that were initially
susceptible to phage infection. For each run, the fre-
quency of phage resistance at the end of the experi-
ment was measured. The goal was to test hypotheses
about the processes that gave rise to variation: the fre-
quency of phage resistance varied considerably across
the runs, in a manner more consistent with the spon-
taneous, random occurrence of mutations than with
mutation to phage resistance after exposure to phage.

It is illuminating to compare the Luria–Delbrück
experiment with the efforts of modern evolutionary
geneticists to “make sense out of sequence”2. Like
Luria and Delbrück, we seek to use POLYMORPHISM DATA

to test models about evolutionary forces (although
we might be more interested in historical demogra-
phy or selection than in mutation). However, unlike
them, we analyse polymorphisms collected from nat-
ural populations. This modern approach leads to two
fundamental problems — first, because there is no
replication of the ‘experiment’, only one run of evolu-
tion is available to be studied, and second, the start-
ing conditions of the ‘experiment’ are unknown.
These problems might seem obvious, but it is not
always appreciated how profound their implications
are for data analysis. Consider a sample of HAPLOTYPES

from a population. For each haplotype, the allelic
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HAPLOTYPE
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of a given individual.
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The merging of ancestral
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STOCHASTIC PROCESS

A mathematical description of
the random evolution of a
quantity through time.
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BACTERIAL CONJUGATION

Genetic recombination in
prokaryotes that is mediated
through direct transfer of DNA
from a donor to a recipient cell.

the randomness of genealogies and of mutations. For
example, to decide if the data in the previous paragraph
are unusual, we might make assumptions about the
process that gave rise to those data, and imagine many
random repetitions of the evolutionary process. If the
fraction of the random genealogical and mutational his-
tories that could have given rise to the observed data is
small, we can conclude that the assumptions cannot
explain the pattern. To consider genealogies that might
be found in different runs of evolution, we need models
that allow us to construct random genealogies, and the
coalescent is one such model.

Effects of recombination. Recombination can be readily
incorporated into the genealogical framework. The
principle is the same as in traditional pedigree studies9.
Recombination in a chromosomal segment means that
it had two parental segments. So, the lineage of the seg-
ment splits in two, but precisely how the splitting occurs
depends on the recombination process — for example,
BACTERIAL CONJUGATION and meiotic crossing over have dif-
ferent effects on genealogies because, in the process of
bacterial conjugation, the chromosome is necessarily
broken in two places, whereas crossing over involves
only a single break.

The main effect of recombination is that it allows
linked sites to have different genealogical trees. To
observe this, it is better to view recombination from a
spatial rather than a temporal perspective. The geneal-
ogy of a sample of recombining sequences can be 
considered as a “walk through tree space”10 — as we
proceed from one end of the sequence to the other, the
tree changes, but only gradually as each recombination
event affects only a subset of the branches (FIG. 3). So, the
extent to which the histories of different sites are corre-
lated depends on the recombinational distance between
them — as recombination approaches infinity, the
genealogies of unlinked loci are conditionally indepen-
dent, given the historical demography of the group
under consideration. Because the pattern of polymor-
phism reflects the underlying genealogical trees, allele
frequencies at linked sites in general cannot be indepen-
dent. An important consequence of this dependency is
linkage disequilibrium — the non-random association
of alleles in haplotypes11.

Recombination is very important to evolutionary
inference, because unlinked or loosely linked loci can
often be viewed as independent replicates of the evolu-
tionary process. In the absence of recombination, the
entire genome would correspond to a single genealogi-
cal tree, and we would never have more than a single
independent replicate. So, the statistical benefits pro-
vided by recombination are substantial. As discussed
below, the precision of evolutionary-inference methods
increases rapidly with the number of genes studied, and
very slowly with the number of sampled individuals.

What is the coalescent?
So far, we have used only the basic principles of
Mendelian genetics to understand how genetic poly-
morphism data reflect the history of coalescence,

be no polymorphism — as well as the genealogy of
sampled sequences. To model the genealogy, we need to
consider the recombination and coalescence of lineages.

Coalescence and mutation. Consider a particular site in
the genome of a species. All existing copies of this site
must be related to each other and to a most recent com-
mon ancestor (MRCA) through some form of
genealogical tree. Polymorphism at the site is due to
mutations that occurred along the branches of this tree,
and the frequency of each sequence variant is deter-
mined by the fraction of branches that inherits the vari-
ant (FIG. 1). The pattern of polymorphism therefore
reflects both the history of the coalescence of lineages,
which gives rise to the tree, and the mutational history.

To observe the effect of history on data analysis,
imagine that we sequence a 10-kb region in 30 ran-
domly chosen individuals and, surprisingly, find no
polymorphisms. We might interpret this observation as
evidence for selective constraint in this region.
Alternatively, it might be that the individuals chosen for
the comparison are unusually closely related. So,
the interpretation depends on the genealogy of the
sequences, which is not known.

To deal with this uncertainty, we treat the genealogy
as random, in the same way that we treat mutation as
random. Just as mutations occur differently across runs
of evolution1, if evolution were repeated, samples from
different ‘runs’ of evolution would have different
genealogical trees (FIG. 2). It is necessary to incorporate
both of these sources of variation into data analysis —
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Figure 1 | The source of genetic variation. Polymorphism at
a particular site results from mutations (shown here as G→T)
along branches of the genealogical tree, which connects
sampled copies of the site to their most recent common
ancestor (MRCA).

Figure 2 | Random genealogical trees. The trees were generated using the same model — 
the standard coalescent for sample of size ten. Therefore, the variation among the trees reflects
chance alone.
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The basic idea underlying the coalescent is that, in
the absence of selection, sampled lineages can be viewed
as randomly ‘picking’ their parents, as we go back in
time (FIG. 4). Whenever two lineages pick the same par-
ent, their lineages coalesce. Eventually, all lineages coa-
lesce into a single lineage, the MRCA of the sample. The
rate at which lineages coalesce depends on how many
lineages are picking their parents (the more lineages, the
faster the rate) and on the size of the population (the
more parents to choose from, the slower the rate).

mutation and recombination. We now need a popula-
tion-genetics model that incorporates these principles
and that allows us to construct and analyse random
genealogies. The coalescent has become the standard
model for this purpose. This choice is not arbitrary, as
the coalescent is a natural extension of classical popu-
lation-genetics theory and models7. It was discovered
independently by several authors in the early
1980s12–15, although the definitive treatment is due to
Kingman12,16.
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Figure 3 | A simulated sample of six haplotypes using the standard coalescent with recombination. A | In the top graph,
the red line shows how the time to the most recent common ancestor (MRCA) (in units of coalescence time — 1 unit corresponds
to 2N generations, if N is the size of the population) varies along the chromosome as a result of recombination. The parameters 
were chosen to represent ~10 kb of human DNA. The crosses along this line mark positions at which recombination took place 
in the history of the sample. Note that only a fraction of the recombination events resulted in a change of the time to the MRCA. 
B | A selection of gene trees (a–e) that correspond to specific positions along the chromosome (a–e) is shown. Trees for closely
linked regions tend to be very similar (for example, c and d), if not identical. Numbers 1–6 represent individual haplotypes.
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GENETIC DRIFT

The random fluctuations in
allele frequencies over time that
are due to chance alone.

HORIZONTAL TRANSFER

The transfer of genetic material
between members of the same
generation, or between members
of different species.

ESTIMATOR

A function that produces an
estimate of some parameter.

and then add mutations forwards along the branches
of the newly generated tree. Because we only use the
individuals that are ancestral to the sample, there is no
need to keep track of the entire population, and com-
putational efficiency is greatly increased. The basic
models, however, are the same; for studies of the
effects of past evolutionary forces on current genetic
variation, the coalescent is simply a better way to solve
problems that could in principle (but not usually in
practice) be solved using classical population genetics.
Conversely, the classical forward-in-time approach is
more appropriate for studies of how the long-term
behaviour of evolutionary systems depends on initial
conditions7,21,22.

Why not phylogenetics?
When analysing polymorphism data, it is important to
distinguish genealogical methods, such as those based
on the coalescent, from methods that are borrowed
from phylogenetics. Although both approaches involve
trees, they are fundamentally very different.

Phylogenetic methods estimate trees. They were
developed to determine the pattern of species descent,
which is assumed to be tree-like. A single sequence
from each species of interest is usually analysed, and
the genealogy of the sequences is estimated. The esti-
mated gene tree is then used to draw conclusions
about relationships between species. Typically, the
gene tree is simply equated with the species tree, an
assumption that can be justified by the strong correla-
tion between gene trees and species trees that is
expected in most situations (BOX 1). However, the same
approach makes little sense for questions that involve
more complicated, demographic scenarios. In such
cases, conclusions about the population tree cannot
be drawn simply by looking at the estimated gene tree
— different genes might produce different trees —
and it is necessary to consider the likelihood of the
estimated tree under alternative models. Furthermore,
it might not make sense to try to estimate a popula-
tion tree — the relevant model might involve migra-
tion (or HORIZONTAL TRANSFER) between populations,
population history might not be tree-like, and the
rates of migration might be of primary interest.

Genealogical methods do not estimate trees. Instead,
they are used to estimate parameters of the random
genealogical process that has given rise to each tree. In
statistical terms, the tree itself typically becomes a nui-
sance parameter that is in itself of no inherent interest
(BOX 2). The genealogical approach has none of the limi-
tations of the phylogenetic methods and provides a
coherent statistical framework in which to consider
recombination, migration, selection and other
processes.

Using the coalescent
As a tool for data analysis, the coalescent has many
applications. Here, we consider its use as a mathematical
modelling tool, as a simulation tool for hypothesis test-
ing and for exploratory data analysis, and as the basis for
full-likelihood inference.

Because selectively neutral mutations do not affect
reproduction, they can be superimposed on the tree
afterwards.

Many other factors can be included in the model7.
Some phenomena, such as variation in reproductive
success, age structure and skewed sex ratios, change only
the rate of coalescence, but other factors, such as popu-
lation structure or fluctuation in population size, also
change the shape of genealogical trees. Recombination
has profound effects on the process, in that the coales-
cent with recombination does not generate a random
tree, but rather a random graph11,14,17. This complication
is, however, readily incorporated into the model. The
only factor that causes real, although not insurmount-
able18–20, difficulties is selection. By definition, under
selection, some genotypes reproduce more than others,
which means that, going back through time, lineages do
not randomly pick parents.

The coalescent is closely related to classical popula-
tion-genetics theory. The difference lies mainly in the
type of question asked and the manner in which they
are explored. Imagine that we wish to use a stochastic
simulation to investigate the distribution of a sample
statistic under a model that involves random GENETIC

DRIFT. Traditionally, we would have simulated the evo-
lution of the entire population, forwards in time, until
equilibrium is reached (in other words, until the
dependence on the starting conditions vanishes), and
only then would a sample have been taken. The same
procedure would have been repeated for each sample.
Using the coalescent, we simulate the genealogy of the
sample going back in time until the MRCA is found,
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Figure 4 | The basic principle behind the coalescent.
a | The complete genealogy for a population of ten haploid
individuals is shown (diploid populations of N individuals are
typically studied using a haploid model with 2N individuals7).
The black lines trace the ancestries of three sampled lineages
back to a single common ancestor. b | The subgenealogy for
the three sampled lineages. In the basic version of the
coalescent, it is only necessary to keep track of the times
between coalescence events (T(3) and T(2)) and the topology
— that is, which lineages coalesce with which. N, number of
allelic copies in the population; n, sample size.
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BALANCING SELECTION

The selection that maintains two
or more alleles in a population.

ADAPTIVE RADIATION

The evolution of new species or
subspecies to fill unoccupied
ecological niches.

tionship between the average number of pairwise dif-
ferences in a DNA sequence sample and the total num-
ber of observed mutations that is predicted by the
basic coalescent model. If an unusual value of the 
D statistic is observed, the standard model might be
rejected. It is often possible to show mathematically

Mathematical results. The coalescent process is a pow-
erful mathematical tool that can be used to derive esti-
mators of population parameters, such as rates of
mutation or migration, and to devise statistical tests of
models of evolution. For example, the widely used test
that involves Tajima’s D statistic23 is based on the rela-

Box 1 | Gene trees and species trees

The basic phylogenetic model relates species to each other through a
bifurcating tree. This ‘species tree’ is estimated as the estimated genealogy
of genes sampled from the different species. How can this approach be
valid if, as we argue, each gene tree is the random outcome of a historical
process? Different genes should give rise to different trees; in fact, even a
single gene could have many trees as a result of intragenic recombination.
This apparent paradox is resolved by the fact that, as long as time intervals
between species-branching events are much greater than time intervals
between lineage-branching events in each species, gene and species
divergences are likely to be nearly concurrent64,78, and gene trees are likely
to be very similar to the species tree13,71,72,79.

Consider the two species trees that are shown here. Embedded in each
species tree is the gene tree that relates all existing copies of a particular
gene to each other. The gene trees are random: each copy of a gene is
connected to a random copy from the previous generation.As illustrated
by the top tree, it is possible for a gene tree not to reflect the species tree.
A gene sampled from species b (green) and one from species c (blue) are
more closely related to each other than to a gene sampled from species a,
even though a and b were the last species to separate. By contrast, in the
bottom tree, all lineages in a species coalesce more recently with each other
than do the species themselves. Therefore, it matters neither how many
copies are sampled from each species, nor which copies are sampled — all
samples indicate the same tree shape. Furthermore, trees for different genes
(as well as for recombinant parts of the same gene) will all have this same
topology. The lengths of gene-tree branches might differ (depending on
how long it takes to reach the most recent common ancestor (MRCA) in
the ancestral species), but these random variations are small compared
with the total length of each branch. The difference between the examples
shown here is that, in the top tree, the branches of the species tree are of
similar length to the branches of the genealogical trees in each species,
whereas, in the bottom tree, the branches of the species tree are much
longer. How long must the species-tree branches be to avoid discordance of gene trees? The answer depends on the within-
species evolutionary model. Under the basic coalescent model, the expected time to the MRCA for the entire population is
twice the ‘effective’number of copies of the gene in the population, in units of generations (in humans, estimates of the time
to the MRCA are typically of the order of one million years36). So, branches of the species tree that are several times longer
than average times to within-species MRCAs should usually suffice to avoid discordance. However, because genealogical
trees are random, there is always a small probability that a particular gene tree will disagree with the species tree (this
probability will be higher for loci with genealogies that have been deepened by BALANCING SELECTION80,81).

Because large phylogenies are more likely to contain some short species branches, we expect them to produce some
discordance. We also expect discordance between gene trees and species trees for phylogenies that include ancient but
rapid divergence, such as ADAPTIVE RADIATIONS of African cichlid fish82. Nonetheless, it is safe to say that the phylogeny of
well-separated species, such as human, cow and chicken, is not affected by the randomness of genealogies.
For more closely related species, however, gene trees and species trees often disagree13,83–85. Such discordance can be
caused, for example, by gene exchanges72,86, but random genealogies often provide a simple explanation for this
observation. In these cases, it is useful to infer the species tree using more than one individual per species45,84,87 and, more
importantly, using more than one locus29,88,89. For example, Chen and Li90 obtained gene trees for 53 randomly chosen,
non-coding regions in human, gorilla and chimpanzee. Of these, 31 supported human–chimp, 10 supported
human–gorilla, and 12 supported chimp–gorilla as the most closely related pair, and a comparison of the likelihoods of
all three models shows that the human–chimp grouping is statistically supported with near certainty.

It should be noted that genes that had direct roles in the divergence of incipient species are likely to have diverged
simultaneously with species, so that their genealogies will more accurately reflect species trees71,91,92. For example, it is
thought that selection on a region of the tb1 (teosinte branched1) gene was involved in the divergence of maize from teosinte.
Phylogenies that are based on this region perfectly separate maize and teosinte sequences, whereas those based on other
regions do not93.A similar result holds for the hybrid sterility gene OdsH (Ods-site homeobox) in Drosophila melanogaster92.

a b c

a b c

Coalescence
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BAYESIAN APPROACH

A statistical perspective that
focuses on the probability
distribution of parameters,
before and after seeing the data.

FREQUENTIST APPROACH

A statistical perspective that
focuses on the frequency with
which an observed value is
expected in numerous trials.

TEST STATISTIC

A function that produces values
from data for comparing with
expected values under various
models.

VARIANCE

A statistic that quantifies the
dispersion of data about the
mean.

BOTTLENECK

A temporary marked reduction
in population size.

be shown25 that, for an unstructured population, this
probability is simply (n – 1)/(n + 1). So, even the geneal-
ogy for a small sample is likely to contain the MRCA of
a population.

A wide variety of evolutionary scenarios can be
modelled using the coalescent. Even if the mathematical
analysis is intractable, it is almost always easy to simulate
the process. This makes it possible to investigate
whether a particular scheme can be expected to have left
a trace in the data, which is useful to know before
embarking on an empirical study to investigate the sce-
nario in question. Historical events, such as BOTTLENECKS

and migrations, can be surprisingly difficult to detect.
Many questions in human evolution are plainly unan-
swerable using data that have so far been available26,27

(BOX 3). The coalescent can provide useful guidance
about how many individuals, populations and loci need
to be sampled to answer the questions of interest27–29.

Coalescent simulations. One of the most widespread
uses of the coalescent is as a simulation tool4,7. Using the
coalescent, it is possible to simulate samples from a wide
variety of models. Compared with the alternative, classi-
cal population-genetics simulations — which run for-
wards in time — coalescent simulations are easier to
implement and much more efficient.

Coalescent simulations are very well suited to
exploratory data analysis. Samples that are simulated
under various models can be combined with data to
test hypotheses. The canonical approach, developed
mainly by Hudson and colleagues4,30,31, can be
described as follows. Let us assume that we observe an
unusual pattern of polymorphism in a data set and
want to know if it is simply a historical accident or
whether it requires a special explanation (such as the
existence of selection). We then simulate many possible
data sets under a null coalescent model that does not
include the factor of interest (for example, selection).
Finally, we compare the value of a test statistic obtained
from the real data with the distribution of values
obtained from the simulated data sets. If patterns that
are characteristic of the actual data are rarely seen in the
simulations, we reject the null hypothesis. Having
rejected the null hypothesis, it is usually possible to pro-
pose patterns that are compatible with the actual data.
It is typical of population-genetics applications that
many alternative hypotheses are possible. It is therefore
important to choose carefully the alternatives for char-
acterizing deviations from the null. It should also be
kept in mind that the procedure outlined above is often
a form of post-hoc analysis that suffers from the usual
problems of multiple comparisons.

A prototypical coalescent simulation study is given
by Hudson et al.32. At the Superoxide dismutase (Sod)
locus in Drosophila melanogaster, Hudson et al. studied
DNA sequence variation in a 1,410-bp region.
Surprisingly, they found that five out of ten sequences
in a sample from Barcelona, Spain, were identical in
this region, sharing an allele termed Fast-A. The
remaining five sequences were all different and con-
tained 55 polymorphic sites. To test if this type of data

how departures from the standard model (such as
those caused by population structure or selection7)
affect the TEST STATISTIC, which makes it possible to inter-
pret the observed deviation.

Coalescent theory also provides insights into the
peculiarities of population-genetics data. A good
example is the effect that sample size has on data
analysis. Because all existing copies of a particular
sequence in the genome are related through a
genealogical tree, population samples are never com-
pletely independent24. The three copies in FIG. 1 that
have the derived base T rather than the ancestral G did
not mutate independently from G to T. Instead, they
share T because of common ancestry. This obvious
fact has surprising statistical consequences. Most
importantly, increasing the sample size, n, does not
improve the accuracy of estimates in the manner we
are used to in conventional statistical analysis. For
example, in the standard coalescent, the VARIANCE of
estimators of the scaled mutation rate θ = 4Nu
decreases at a rate of 1/ log n, rather than 1/n. This
means that increasing the sample size is only margin-
ally effective in improving the estimate. The reason for
this is that no matter how large the sample, there is still
only a single underlying genealogical tree.

The degree to which sampled sequences are corre-
lated depends on the evolutionary model — for exam-
ple, in a rapidly growing population, sequences are less
correlated24. The only way that variance caused by the
random nature of the trees can be reduced is by consid-
ering recombination — that is, by observing several loci.

Another illuminating example concerns the MRCA
of a population. One might imagine that quite a large
sample is required to ensure that the MRCA of the sam-
ple is also the MRCA of the entire population, but it can

Box 2 | Likelihood for trees

Basic statistics makes the distinction between phylogenetic and coalescent approaches
apparent. The fundamental equation for likelihood inference in phylogenetics is94

where L is the likelihood (the probability of the data, given the parameters), D is the 
data (typically DNA sequences), G is the tree and µ is the collection of parameters in 
the mutation model. The objective of the analysis is to estimate the parameter G.

The analogous equation in the coalescent setting is22,42,94

where α is the collection of parameters (such as population sizes and migration rates)
for the population process. The objective of the analysis is typically to estimate these
parameters. The tree or genealogy, G, is a so-called nuisance parameter, which we
remove by averaging the likelihood over all possible values.

In the event that features of G (or G itself) are of interest, it is more natural to treat
them as random variables than as parameters to be estimated5. Because there is only one
actual evolutionary history, it might be argued that a BAYESIAN statistical viewpoint, as
opposed to a FREQUENTIST APPROACH, is warranted44. From a Bayesian perspective, the
coalescent provides the most accurate characterization of genealogies that can be made
before data are observed.

L = P(D|G, µ), (1)µµ

L = Σ P(D|G, µ)P(G, α), (2)µµ α
G
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Asian — followed by their divergence (BOX 3), they simu-
lated many genealogies and for each, they determined
the position of the MRCA. In the empirical data, nine
out of ten estimated genealogies had an African ancestor
(and the tenth locus had only a single polymorphic site).
This pattern was found to be highly unlikely under the
investigated multiregional model, unless the African
population size was much larger than the Asian and the
European.As data accumulate for more loci, it should be
possible to test increasingly sophisticated models of
human evolution in this manner.

Coalescent simulations can also be used for purposes
that are only indirectly related to data analysis. As men-
tioned above, they can be useful in study design — for
example, to determine the number of loci that need to
be surveyed. Additionally, simulated samples help to
evaluate the performance of new statistical tests37,38. This
approach can be valuable whether or not the proposed
tests are based on coalescent reasoning39. Because some
methods are developed in advance of the appropriate
data to which they can be applied, coalescent simula-
tions conveniently provide data sets on which new
methods can be tested. Finally, as discussed below, coa-
lescent simulations can have an important role in likeli-
hood calculations.

set was unusual under a model of neutral evolution act-
ing on that locus, the authors simulated 10,000 sam-
ples. In each, they simulated random genealogies under
the standard coalescent model, both with and without
recombination, using sample sizes of ten. They then
randomly placed 55 mutations on the gene tree, obtain-
ing random data sets (it should be noted that to base
the analysis on the observed number of mutations
rather than on the unknown mutation rate is not cor-
rect technically, but in practice, the problem is only an
issue for very small values of the mutation parame-
ter33–35). For each data set that was constructed in this
way, they checked whether it included a subset of five
haplotypes that had no polymorphism (FIG. 5). For the
model with no recombination, only 1.1% of the runs
included such a subset, leading Hudson et al. to suggest
an alternative hypothesis of favourable selection or
‘hitchhiking’ acting on the Fast-A variant.

A feature of the simulation approach is that the null
hypothesis does not have to be a basic coalescent model.
For example, Takahata et al.36 used the simulation
approach to investigate whether a particular multi-
regional model of human origins was compatible with
data from ten human loci. Using a model of migration
between three subpopulations — African, European and

Box 3 | The meaning of ‘mitochondrial Eve’

The difference between phylogenetic and coalescent approaches is well illustrated by the interpretation of the human
mitochondrial DNA (mtDNA) tree. The first estimates of this tree caught the world’s attention by indicating that all
modern humans shared a common female ancestor as recently as 200,000 years ago, and that the root of the tree was
among Africans95,96. The tree was interpreted as evidence for the ‘out-of-Africa’ model of human origins, in which modern
humans evolved in Africa and spread over the world relatively recently (perhaps 100,000 years ago), replacing Homo
erectus, which had dispersed worldwide much earlier. The studies were immediately criticized on several methodological
grounds, the most important being that the estimated tree was by no means the only possible one, as several equally
plausible trees had a non-African root97–99. Subsequent studies have tended to support the original tree100, but a more
fundamental problem is that the mtDNA tree itself actually tells us very little about human origins. The problem is
simply that the tree is compatible with many reasonable hypotheses. The figures below show cartoon versions of the data,
and three popular models101,102. Because the root is too recent, the mtDNA tree is not compatible with the ‘candelabra’
model, which can therefore be rejected. However, the tree could have arisen under either the out-of-Africa or the
‘multiregional’ model of human origins. Under the out-of-Africa model, a recent African root is expected; under the
multiregional model, an African root is one of three possibilities, and a recent root is common in models that include
migration. Therefore, even if it were possible to estimate unambiguously the mtDNA tree, we would be unable to choose
between these two models, unless we were able to compare the likelihood that each of them could have given rise to the
observed tree. This cannot be done using phylogenetic methods, but is precisely what coalescent methods are designed to
do (BOX 2). With respect to the question of human origins, an immediate conclusion is that a single gene tree will almost
never suffice to choose among demographic models of population histories26,27.
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LIKELIHOOD ANALYSIS

A statistical method that
considers the likelihood of
observing the data under
alternative models.

IMPORTANCE SAMPLING

A computational technique for
efficient numerical calculation of
likelihoods.

MARKOV CHAIN MONTE CARLO

A computational technique for
efficient numerical calculation of
likelihoods.

SUMMARY STATISTIC

A function that summarizes
complex data in terms of simple
numbers (examples include
mean and variance).

SEGREGATING SITE

A DNA base-pair position at
which polymorphism is
observed in a population.

ADMIXTURE

The mixing of two genetically
differentiated populations.

statistics capture the information in full data sets.
Careful choices of such statistics will be needed for like-
lihood computations in complex models.

Software. The coalescent is a modelling tool that can be
used in a wide variety of situations. Consequently, the
diversity of conceivable coalescent-based analyses is too
vast for any single software package to encompass.
Several standard estimators and tests can be computed
using packages such as DnaSP56 and SITES57.
Researchers might also construct programs that suit
their particular needs, using readily available subrou-
tines for coalescent simulations58.

The importance of pre-existing software packages is
greatest for the third category of coalescent-based analy-
sis — the likelihood methods. A summary of computer
programs that are useful in likelihood analysis, includ-
ing LAMARC43,59, GENETREE40 and BATWING47, is
given in REF. 8.

Conclusion
The analysis of polymorphism data must take the histori-
cal nature of the data into account. Today, polymorphism
data are often analysed using methods that are borrowed
from phylogenetics, in an approach that can be repre-
sented in the following way. First, collect sequence data.
Second, estimate the genealogical tree of the sample
sequence (without regard for recombination, that is,
regardless of whether or not such a tree really exists).
Finally, tell a story based on the estimated tree. The
approach favoured by us can be summarized as follows
(see also BOX 2). First, collect sequence data; second, con-
sider all possible genealogies, including those with recom-
bination, and their probabilities under models of interest.
Third, for each genealogy, calculate the likelihood of the
data (the total likelihood of the data under each of the
models is the sum of the likelihoods for all trees, weighted
by the probability of each genealogy under that model).
Finally, estimate parameters by finding values that maxi-
mize the likelihood of the data, and test models by com-
paring likelihoods under different hypotheses.

The advantages of the second approach include its
ability to choose among models using standard statisti-
cal criteria, and its capacity for incorporating migration,
ADMIXTURE and other demographic phenomena. Perhaps
most importantly, in the era of genomic polymorphism
data, the coalescent approach can naturally incorporate
the effects of recombination, whereas the phylogenetic
approach cannot.

The use of phylogenetic methods is justified if inter-
est lies not in the parameters of the evolutionary model,
but rather in the particular history of a specific locus.
This is sometimes true, for example, when Y chromo-
somes are used to study patrilineal inheritance of sur-
names60. Even in these situations, however, relying on an
estimated genealogy before proceeding with the analysis
ignores uncertainty in the branching times, if not also
the branching order itself. Typically, the analysis leads to
artificially reduced confidence intervals, because this
source of error is not taken into account, as it is in the
coalescent approach.

Likelihood methods. From a statistical point of view, one
of the most exciting aspects of the coalescent is that it
allows full LIKELIHOOD ANALYSIS of evolutionary models8.
The idea is straightforward in theory. All we need to do
is evaluate the likelihood EQN (2) in BOX 2 for our data
and for our favourite models. Unfortunately, this is not
easy in practice, because summing (or integrating) over
all possible genealogies turns out to be exceedingly diffi-
cult. Advanced computational techniques, such as IMPOR-

TANCE SAMPLING40,41 and MARKOV CHAIN MONTE CARLO42–44, have
been applied to this problem, but it has so far been diffi-
cult to obtain reliable results, except for very simple
models. Encouragingly, some progress with more
sophisticated demographic models that include popula-
tion divergence45–47, migration48,49 or both50,51 has
recently been made.

A promising alternative is to use approximate meth-
ods based on SUMMARY STATISTICS52–55. Instead of numeri-
cally evaluating EQN (2) (BOX 2), the full data set D is
replaced by a set of summary statistics, S, such as the
number of observed SEGREGATING SITES. Data are then sim-
ulated using various parameter values, and each simula-
tion is accepted or rejected according to how close the
simulated data are to the real data. For a given set of
parameter values, the likelihood is then approximated
by the proportion of simulations that are accepted.

This summary-statistic approach has great potential
for the inference of parameters under models for which
complete evaluation of EQN (2) is intractable. Important
for its success is the extent to which values of summary

a

b

*

Figure 5 | Simulated random genealogies with a sample
size of ten. The figure is based on data from the study of
Hudson et al.32. Both genealogies were simulated from the
standard coalescent model (without recombination). A total of
55 mutations (green horizontal lines) were placed randomly on
each tree. a | One set of at least five sequences with no
polymorphism; (marked by an asterisk) b | All sets of
sequences contained polymorphisms. Red dots denote
individual haplotypes.
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PHYLOGEOGRAPHY

The use of estimated gene
genealogies to study
geographical history and
structure of populations and
species.

demographic parameters of pathogen populations,
and therefore fall in the realm of coalescent methods.
Examples that seem appropriate for coalescent-
based analysis include the timing of introduction 
of a pathogen into the human population, whether
certain virulent lineages have been favoured by selec-
tion and how rapidly the evolution of pathogens
occurs in hosts. Serially sampled data that are 
typical of host–pathogen systems raise new theoreti-
cal issues, and this area will probably become 
an important source of problems for coalescent
methods67,68.

A genealogical approach might also affect how the
origin and divergence of species are studied.
Variation among gene genealogies across loci means
that a view of evolution as the bifurcation of com-
plete genomes is not always tenable69,70. As described
in BOX 1, it is sufficiently common for genes to differ
in their histories that such discordance cannot be
treated as unusual. Sexual organisms can be viewed as
collections of genomic regions with different histo-
ries71,72; for asexual organisms, bacterial recombina-
tion (that is, horizontal transfer) might be sufficiently
widespread that a similar perspective must be
adopted.

Coalescent-based methods can be used for infer-
ence of relationships among groups that are suffi-
ciently related that genealogies of different genomic
regions disagree. Methods of estimating population
and species trees must be adapted to accommodate
equally valid but differing histories presented 
by different parts of the genome, as well as 
polymorphisms shared among closely related 
species. Coalescent-based methods for tree estima-
tion, which, unlike most traditional phylogenetic
algorithms, are designed to allow variation both 
in and between species, are uniquely suited for 
doing this45,46.

Finally, coalescent-based methods have the poten-
tial to assist in LD mapping of genes that underlie
complex traits11. LD mapping uses the pattern of
associations among genotypes and phenotypes that
arises from the history of recombination, coalescence
and mutation to identify disease-susceptibility loci.
The objective is not to test evolutionary models, but
to use the pattern of LD that actually exists.
Coalescent-based simulations have been used to
explore the properties of LD in the human
genome73,74. Additionally, reasoning based on simple
coalescent models underlies new methods for identi-
fying disease-susceptibility genes75,76. As the actual
pattern of LD in the human genome becomes
clearer77, more realistic genealogical models can be
applied.

In summary, we are convinced that it is essential
to appreciate the dependence of genetic variation on
its underlying genealogies to analyse polymorphism
data in a rigorous statistical framework. The coales-
cent provides a method to model this dependence. As
genomic data proliferate, its importance is only likely
to increase.

More importantly, in the usual analyses of single
loci, a particular realization of a random genealogical
process is not of great interest, and there is a danger
of drawing unwarranted general conclusions. To take
the familiar example of human origins (BOX 3), we are
surely interested in the history of human migrations,
not in the genealogical relationships between mito-
chondria or Y chromosomes per se.

Problems with the coalescent. It is one thing to say
that random genealogies should be taken into
account when studying polymorphisms, and quite
another to say how this should be done. The coales-
cent is a natural choice for modelling genealogies,
and there are strong theoretical reasons to believe
that it is often a good model for actual data7.
However, the fact remains that it makes an uncom-
fortable number of assumptions (for example, about
the absence of selection61). It seems to us that the
reliance on specific models has largely been a conse-
quence of the scarcity of data. As genomic polymor-
phism data become common, it should be possible to
rely more and more on empirically estimated, coales-
cent-based models. For example, most tests of selec-
tion are based on the rejection of a coalescent model
that assumes a population without geographical
structure30. This is problematic because geographical
structure can affect patterns of polymorphism in
ways that mimic selection7, which increases the risk
of false positives. This problem could be overcome by
first estimating the population structure using
genomic data, and then by testing for selection using
the estimated population-structure model to con-
struct the null hypothesis. Techniques for carrying
out this kind of test have been developed in the con-
text of linkage-disequilibrium (LD) mapping39,62,
which is also troubled by false positives that are
caused by population structure.

A second set of potential problems concerns the
computational difficulties of some coalescent-based
methods. Recombination, in particular, makes likeli-
hood-based inference exceedingly difficult. For many
questions that researchers might naturally wish to
address using polymorphism data, suitable coales-
cent-based methods have not yet been devised.
It remains a challenge for theorists to anticipate
forthcoming data and to develop appropriate analy-
sis techniques. To analyse data on a genomic 
scale, approximate methods will almost certainly
be necessary.

Prospects. Coalescent theory has revolutionized mol-
ecular population genetics over the past 20 years. It
seems certain that it will have a similarly marked
impact on fields such as molecular ecology, PHYLO-

GEOGRAPHY and the study of human origins, as indi-
cated by some of its recent uses36,54,63,64. One other
area in which the coalescent might be of use is the
evolutionary genetics and epidemiology of infectious
disease65,66. Important questions about epidemics of
infectious bacterial and viral agents concern the
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