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Ranking of non-coding pathogenic variants and
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A gene is considered essential if loss of function results in loss of viability, fitness or in

disease. This concept is well established for coding genes; however, non-coding regions are

thought less likely to be determinants of critical functions. Here we train a machine learning

model using functional, mutational and structural features, including new genome essentiality

metrics, 3D genome organization and enhancer reporter data to identify deleterious variants

in non-coding regions. We assess the model for functional correlates by using data from

tiling-deletion-based and CRISPR interference screens of activity of cis-regulatory elements

in over 3Mb of genome sequence. Finally, we explore two user cases that involve indels and

the disruption of enhancers associated with a developmental disease. We rank variants in

the non-coding genome according to their predicted deleteriousness. The model prioritizes

non-coding regions associated with regulation of important genes and with cell viability, an

in vitro surrogate of essentiality.
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There is rapid improvement in the understanding of the
human genome, the organization of function, and the
consequences of human genetic variation. This under-

standing enables multiple innovations in medical genetics.
For example, exome sequencing accelerates the diagnosis and
contributes to the clinical management of rare genetic disorders.
However, exome sequencing only examines less than 2% of the
genome sequence and the current diagnostic yield stands at
around 30%1–4. The role of genetics in many other rare disorders
is at present unknown, and the exact mechanisms of disease
remain largely unexplored. One potential mechanism is through
perturbation of important regulatory regions of the genome.
Recent efforts at extending the search space from the coding to
the immediate regulatory regions show that new pathogenic
variants can be identified in a small fraction of cases5–7. In par-
allel, there are recent reports of diseases that implicate distal
enhancers and changes in the three-dimensional (3D) genome
structure6,8. Thus, the next milestones in the interpretation of the
human genome sequence will emerge from the analysis of func-
tional consequences of genetic variants in the non-protein coding
(here in referred to as non-coding) genome—the remaining 98%
of genome sequence that includes the regulatory machinery.
As previously done for coding genes9, we define a non-coding
genomic element as putative essential when loss of its function
may compromise viability of the individual or results in profound
loss of fitness or in disease.

Interpretation of the non-coding genome requires the identi-
fication of landmarks, features and structures, the same principles
that aid the interpretation of the coding genome. Genome-wide
epigenomic maps have revealed hundreds of thousands of regions
showing signatures of enhancers, promoters and other gene-
regulatory elements10. However, the high-resolution dissection of
functionally relevant nucleotides as well as the hallmarks of
essentiality in the non-coding genome remain limited at pre-
sent11. Multiple sources of biochemical, genetic and evolutionary
data convey functional information on the non-coding genome12.
These data are used by different scoring algorithms13–22 that aim
at ranking variants according to their predicted deleteriousness.
The accuracy of these methods typically increases with ensemble-
based classifiers23 which integrate multiple models. The precision
of functional and deleteriousness prediction can be further
increased by learning from novel data sources. Sources of data
that have not been included in previous analyses include studies
of the patterns of human-specific constraints that are revealed by
population genomic analyses24, analyses of 3D organization of the
genome (e.g., promoter capture Hi-C)25,26, and from high-
throughput screens of enhancer function27. In this work, we
implement state-of-the art machine learning tools to rank-classify
putative essential elements of the non-coding genome with an
emphasis on the contribution of new data modalities. We then
use tiling array deletion and CRISPR interference (CRISPRi) data
to assess the possible functional relevance of the predictions.
Lastly, we assess the predictive tool in two clinical settings:
structural variants associated with the autism spectrum disorder
(ASD) and in a developmental disorder resulting from the dis-
ruption of the regulatory machinery. The study provides a tool for
the interpretation of variants in the non-coding genome and for
the prioritization of genomic regions that are associated with
critical functions. The study design is summarized in Supple-
mentary Fig. 1.

Results and Discussion
Training a model to identify putative essential non-coding
elements. To train a supervised machine learning model, we
included non-coding pathogenic variants from ClinVar28 and

Human Gene Mutation Database (HGMD)29 (N= 782, Supple-
mentary Data 1 and Supplementary Fig. 2). The set of control
variants was built by using all variants from gnomAD (http://
gnomad.broadinstitute.org/) with allele frequencies >1% across
populations and sub-selecting (N= 9516) those that matched the
pathogenic variant set based on distance to splice sites and
genomic element distribution. For validation, we used non-
coding pathogenic variants not included in the original dataset,
from a new release of ClinVar and HGMD (total of N= 286,
including N= 77 mapping to non-coding RNAs (ncRNAs); see
Methods, Supplementary Data 1 and Supplementary Fig. 2).
To mitigate bias in the selection of pathogenic and control var-
iants, we use multiple strategies: (i) the control variants are
selected to be the closest common variants matching the patho-
genic variant in terms of genomic element and distance to splice
site, (ii) a minimum distance of 500 bp is allowed between
pathogenic variants to prevent overweighting of some genomic
regions in the model, but still allowing for sub-genic genomic
element resolution, (iii) the model is trained and tested on non-
overlapping chromosomic regions to counteract the potential
over-training of some genes.

We trained an XGBoost model, an implementation of gradient-
boosted decision trees consisting of a collection of decision trees,
where a node in a single decision tree splits the training data into
subsets (deleterious versus benign). During testing, new variants
with the same feature sets were given to each tree to make a
prediction (putative essential or non-essential). The outputs of
each tree were combined (“ensembling”) to generate a final
prediction. Each variant in the dataset was annotated with 38
features from four major categories (Supplementary Data 2). (i)
Essentiality features, such as context-dependent tolerance score
(CDTS)24 and probability of loss-of-function intolerance (pLI)30,
among others. The latter was used by mapping each non-coding
genetic variant to the closest gene and assigning the gene
essentiality score of that gene to the corresponding variant.
(ii) Chromatin structure features, such as chromosome
conformation24,26 data used either as a binary indicator to
denote whether or not a given non-coding genomic position
physically interacts with gene promoters, or as a continuous
feature, by attributing the respective gene essentiality of the
associated promoter to the distal interacting region. The loop and
anchor features were also used as discrete values representing the
number of cell lines where they were identified. (iii) Gene
expression-related features, such as readout of high-throughput
enhancer functional screens27, and (iv) existing non-coding
deleteriousness metrics: CADD14, ncEigen15, FATHMM18, Fun-
Seq217, LINSIGHT22, ORION21, ReMM19 and ncRVIS31.

We scored the non-coding regions genome-wide. The result of
this process was a score (ncER, non-coding essential regulation)
for each nucleotide, ranging from 0 (non-essential) to 1 (putative
essential). We evaluated the model performance on a test set
comprising 20% of the data through fivefold cross validation and
assessed the generalization of the model on two independent non-
overlapping sets, consisting of hold-out HGMD and ClinVar
variants, for validation of the performance of the classifier
(see Methods, Supplementary Data 1 and Supplementary Fig. 2).
ncER reached a receiver operating characteristic (ROC) AUC of
88% and a precision-recall (PR) AUC of 41% on the test set
(Fig. 1). We then aimed at understanding the collective and
individual contribution of the new features, namely essentiality,
3D genome organization and gene expression features, compared
to the prediction achieved with all previously used scores.
A model trained solely with the new features performed similarly
to a model trained with previously published metrics (Fig. 1a, b,
Supplementary Fig. 3), but most importantly the addition of the
new features in the model increased both ROC and PR AUCs by
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at least 8%. The univariate importance of each input feature in the
model is displayed in Fig. 1c. Most of the features (30 out of 38)
in the model contributed to the score. The top contributing
new features were Orion21 and CDTS24 that measure human-
specific genomic constrain. Because of sparsity of some of the
data (for example, pcHi-C and Vista enhancers), some of the
features did not contribute to the model as few variants mapped
to informative positions. The model generalized to the indepen-
dent validation datasets, including to a set of pathogenic
variants mapping to ncRNAs, achieving an ROC-AUC ranging
from 84 to 93% and a PR-AUC ranging from 45 to 65%
(Supplementary Fig. 4).

We then examined the nature of the high ncER score regions
of the genome based on different ncER percentile thresholds
(99.9th, 99.5th, 99th and 95th percentiles, representing 1.7, 9.9,
21.4 and 117 Mb of cumulative sequence not overlapping
protein coding regions). The distribution of genomic elements
at each threshold is displayed in Supplementary Figs. 5A and 5B.
All types of genomic elements were represented in the highest
ncER score bins of the genome, although cis-regulatory and
enhancer sequences were enriched in the highest percentiles.
High ncER score regions were of small size, with the most
common size range being single nucleotides (Supplementary

Fig. 5C). To have an overview of the putative function of
high ncER score regulatory regions, we did pathway analyses for
the set of genes (N= 701) with at least one promoter nucleotide
in the top 99.9% ncER values. The most significant enriched
biological process GO terms included development and regula-
tion of gene expression, such as heart development and negative
regulation of gene expression (Supplementary Fig. 6). Finally,
we examined the distribution of ncER percentile for an
independent curated set of non-coding Mendelian variants
(see Methods, Supplementary Data 1 and 3, and Supplementary
Fig. 2). The majority of mutations (86%) had ncER values
above the 95th percentile, and 58% above the 99th percentile; a
5.9- and 15.4-fold enrichment over matched singleton variants,
respectively (Fig. 1d). Similarly, we observed a significant shift to
higher ncER values when assessing genome-wide association
studies (GWAS) hit single-nucleotide variants (SNVs) (see
Methods, Supplementary Data 1 and Supplementary Fig. 2)
compared to a control set of common variants (Supplementary
Fig. 7).

In summary, a model that trains on novel genomic features
(essentiality, 3D organization, expression) adds precision to
previous models that trained on partially orthogonal features
(biochemistry, conservation). The model performs well in testing
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Fig. 1 Ensemble learning for the prediction of deleterious variants in the non-coding genome. Performance ROC-AUC (a) and PR-AUC (b) on the test set
(N= 136 non-coding pathogenic and N= 2017 control variants) of a model trained only with published deleteriousness metrics (blue), only with new
features, namely essentiality, 3D genome organization and gene expression features (orange) and with both new features and published metrics (green,
ncER). The importance of the various input features in the ncER model is shown in c. Blue, published scores; green, new essentiality features; red, new 3D
chromatin structure features; orange, new regulatory/functional screen features. Panel d shows the distribution of ncER percentiles for an independent set
of 137 curated non-coding pathogenic Mendelian variants compared to a set of singletons from gnomad matched by genomic element and distance to
splice sites. There is statistically significant enrichment for both dominant (N= 85) and recessive (N= 52) non-coding pathogenic variants in high ncER
percentiles. p Values were computed with Fisher's exact test. ROC receiver operating characteristic, PR precision-recall, AUC area under the curve
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and generalization using independent sets of human non-coding
disease variants.

Functional correlates of highly ranked non-coding regions. To
assess whether ncER signals effectively identified important non-
coding regions, we analyzed two sets of functional data. The first
analysis used high-throughput CRISPRi data from 1.29Mb of
sequence in the vicinity of two essential transcription factor
genes, GATA1 and MYC32. The library deployed more than
80,000 single guide RNA (sgRNAs) pairs tiled across the genomic
loci. The readout of the study was cellular proliferation of K562
erythroleukemia cells. To profile the region, we extracted the
highest ncER score for each probe. GATA1 or MYC regions were
characterized by a high ncER score, with the median being in the
94th percentile (Fig. 2a, b and Supplementary Fig. 8)—which is
consistent with the biological importance of the loci. Within this
region, we observed a further shift to a median 99th ncER per-
centile for the regions targeted by the functional pairs of sgRNA
probes (p < 2.2e−16, compared to non-functional probes—those
with less than twofold change decrease in cell viability). Impor-
tantly, we removed all sgRNA probes that overlapped with an
exon (1746 of 77,368, 2.3%), Fig. 2b. The parameters of predictive
performance and accuracy of ncER are shown in Supplementary
Table 1. In summary, the sequences that control cellular pro-
liferation, cell viability and gene expression of GATA1 and MYC
reside in the regions with high ncER scores.

The second dataset corresponded to high-throughput scanning
for cis-regulatory elements by tiling-deletion and sequencing
(11,570 CREST-seq probes)33. The area investigated encompassed
2-Mb of the POU5F1 locus in human embryonic stem cells.
POU5F1 encodes a transcription factor that plays a key role in
embryonic development and stem cell pluripotency. Knockout of
POU5F1 is associated with embryonic mortality in the mouse and
scores as an essential gene in humans (pLI score of 0.89)9,30.
Thus, POU5F1 is expected to use regulatory elements with
features of essentiality24. The parameters of predictive perfor-
mance and accuracy of ncER are shown in Supplementary Table 2
and Supplementary Fig. 9. By extracting peaks of signal, CREST-
seq identified 45 cis-regulatory elements, including 17 previously
annotated as promoters of unrelated genes that, like typical
enhancers, form extensive spatial contacts with the POU5F1
promoter. The CREST-seq peaks encompassed a wide range of
sizes and were longer than the probed deletions, therefore
increasing the likelihood of having at least one nucleotide with
high ncER percentile within the peaks. To account for the longer
size, we averaged the ncER signal over 10 bp bins and reextracted
the percentiles genome-wide. These binned scores were used for
the remainder of the analyses. The 45 enhancers of POU5F1 were
significantly more likely have high ncER scores compared to
random genomic loci of matched size (Fig. 2c). For example, 31%
of POU5F1 enhancers reside in regions with ncER >99th
percentile, compared to 7–16% for random genomic regions
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Fig. 2 Comparison of experimental functional assays with in silico ncER predictions. a CRISPRi effect on cell viability (75,622 sgRNA probes pairs) from
Fulco et al.32 and the corresponding maximum ncER score across the GATA1 and MYC loci. Accuracy at four ncER thresholds is shown in yellow, orange,
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matched to enhancer size, p ≤ 0.01. Similarly, the enhancers
contained the highest scored regions within the locus in
permutation analysis (Supplementary Fig. 10).

In summary, ncER has a good performance for the identifica-
tion of deleterious variants in the non-coding genome. ncER can
also identify non-coding regions associated with cell viability, an
in vitro surrogate of essentiality9, and with regulation of an
essential gene. Thus, we speculated that ncER may help map
critical regulatory and structural elements of the non-coding
genome in the setting of human disease.

Mapping important regulatory elements in clinical diseases.
We hypothesized that severe genetic diseases that do not have
causal variants in the coding region could result from damage to
critical non-coding functional elements. To investigate this con-
cept, we chose two different models that represent challenges for
the accurate mapping of functional sites in relation to disease: (i)
the identification of the critical areas within non-coding struc-
tural variants/deletions associated with ASD, and (ii) the impact
of reorganization of topologically associated domains (TADs) in
the setting of a human developmental disorder that has been
modeled in the mouse.

For the first disease model, we assessed a set of cis-regulatory
structural variants that were associated with ASD in our previous
study (Brandler et al.)7. We evaluated deletions from 120
probands and from 16 unaffected siblings. The median ncER
percentile were not higher in probands compared to unaffected
siblings (median percentile 59.0 compared to 76.1, p= 0.11,
independent two-group Mann–Whitney unpaired test). However,
ASD probands were more likely to carry structural variants with
localized high functional domains compared to healthy siblings
(Fig. 3a). For example, 25% of the deletions in probands
contained regions with ncER > 99th percentile compared to 19%
for deletions in unaffected siblings (n.s.), and 11% in 13,600
random genomic regions matched to the size of the deletions
(p= 8.9e−06, Fisher’s exact test). The fraction of deletions with
high ncER score domain (Fig. 3a) and the cumulative number of
nucleotides with high ncER score were consistently higher in ASD
proband (Supplementary Figs. 11 and 12). In summary, we
observe a general trend of enrichment for high ncER regions in
deletions in probands (Supplementary Fig. 13) and propose their
location (Fig. 3b). This is consistent with recent data on
potentially disruptive mutations among conserved non-coding
sequences and a call for improved variant detection and
functional classification of non-coding variants34. Because the
ncER score is trained with severe deleterious and unfitting
variants, it may be less sensitive to changes observed in candidate
indels in ASD.

Next, we chose a human disease that involves the rearrange-
ment of the regulatory landscape of IHH (encoding Indian
hedgehog). Brachydactyly A1 is characterized by developmental
defects including craniosynostosis and synpolydactyly35,36. Will
et al.37 identified nine enhancers with individual tissue specifi-
cities in the digit anlagen, growth plates, skull sutures and
fingertips. The IHH region in humans shares a common structure
with the mouse locus that was used for the model by Will et al.37.
In their study, consecutive deletions resulted in growth defects of
the skull and long bones that confirmed that the enhancers
function in an additive manner. Deletions and duplications
caused dose-dependent upregulation and misexpression of Ihh,
leading to abnormal phalanges, fusion of sutures and syndactyly.
We identified the critical enhancers to reside in an extensive
region of high ncER scores, including for the regions shared
across human duplications associated with disease (Fig. 3c, blue
box). Within the locus, the critical enhancers were also endowed

with high ncER scores (Fig. 3d). For example, 100% of the
enhancers were at ncER > 99th percentile, compared to 10% for
random genomic regions matched to size, p= 1.1e−09, Fisher’s
exact test (Supplementary Fig. 14).

The value of a predictive model that generates scores of
pathogenicity depends of the validity of the training sets of
pathogenic variants and of the genomic features. The perfor-
mance of ncER is thus dependent on a limited number of known
non-coding pathogenic variants and on the quality of annotation.
Our work uses numerous training and validation strategies:
independent sets of ClinVar/HGMD and curated Mendelian
variants, ASD structural variants, and GWAS variants, as well as
functional assessment on two sets of experimental functional data
and on a model of craniosynostosis and synpolydactyly. The score
can also be limited by ascertainment by proximity: the non-
coding pathogenic variants are close to coding regions because
that is where they may be primarily searched for. However, our
work supports that ncER generalizes to sets of variants with
different genomic distributions. We also acknowledge the
incomplete orthogonal nature of some of the informative features
used in the models. However, Gradient Boosting Trees are well
equipped to handle redundant information. There is no doubt
that the model will improve in precision with the inclusion of
novel features and increasing numbers of annotated non-coding
genome variants.

More generally, this work aims at ranking non-coding regions
for downstream analysis. We have recently reported on the
transcription factor (Myogenic Differentiation 1) MYOD-
directed re-configuration of chromatin interactions. We show
that MYOD-DNA binding is favored at highly constrained
genomic sequences enriched in pathogenic variants38. This and
recent work39 contribute to the debate about reconciling
redundancy and conservation in the non-coding genome. Work
on developmentally expressed genes supports the concept of
functionally redundant enhancers in mammalian genomes40.
Osterwalder et al.40 indicates that redundancy reduces the
likelihood of severe consequences resulting from genetic or
environmental challenge. However, Osterwalder et al.40 also
suggest that enhancers can be under purifying selection over
evolutionary time and be relevant for organismal fitness under
specific pressures because of their contribution to overall gene
expression levels. We have in the past indicated that essential
genes will use proximal and distant regulatory elements that are
conserved and constrained—thus representing putative essenti-
ality in the non-coding genome9,24. The current model supports
the prioritization of variants and regions across the non-protein
coding human genome for diagnostics and for functional analysis.

Methods
Training features. To train the model, we leveraged a total of 38 features from
four major categories: (i) gene essentiality, (ii) 3D chromatin structure, (iii) gene
expression and other regulatory/functional data and (iv) existing variant patho-
genicity/deleteriousness scores. A complete list of features along with their
descriptions and accession links can be found in Supplementary Data 2.

We have previously identified a coordination of constrains between genes and
their respective cis and distal regulatory elements24. We implement this concept in
the present study by including the following essentiality features: (i) CDTS (our
recently developed approach to score the non-coding genome essentiality, based on
human genetic diversity24, (ii) pLI30, (iii) haploinsufficiency score41, (iv) gene
dosage sensitivity score from ClinGen41,42, (v) autosomal dominant or recessive
categorization43,44 and (vi) Online Mendelian Inheritance in Man (OMIM)
association45. For the metrics that solely provide scores for the genic portion of the
genome, the respective essentiality features were calculated by mapping each non-
coding genomic position to the nearest gene and assigning the corresponding
essentiality metric score to the genomic position.

Chromatin 3D structure features included (i) nucleosome positioning extracted
from MNase data (https://www.encodeproject.org/), (ii) multiple cell type anchor,
loop and domain regions extracted from Hi-C data46, (iii) frequently interacting
regions (FIRE) and TADs extracted from Schmitt et al.47 and (iv) distal enhancer-TSS
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associations extracted from CAGE pairwise expression correlation (FANTOM)48. The
3D organization features were either used as binary indicators to denote whether or
not a given non-coding genomic position physically interacted with gene promoters,
or as discrete values representing the number of cell lines were the structures were
identified. Finally, to combine both essentiality and chromatin structure features, we
created distal essentiality features, by attributing the respective coding gene essentiality
score (pLI) to distal regulatory elements identified through pcHi-C or CAGE pairwise
expression correlations.

The model used gene expression, long non-coding RNA (lncRNA) annotations
and functional regulatory data that have not been used by other existing metrics.

Those included (i) median gene expression and variance across tissues (GTEx)49,
(ii) functionally tested genomic regions with enhancer activity identified through
(ChIP-)STARR-seq experiments27,50 or validated with transgenic mice51 and (iii)
lncRNAs identified through CAGE and transcriptome analysis52.

Lastly, variant pathogenicity/deleteriousness scores used in the model included
CADD14, ncEigen15, FATHMM18, FunSeq217, LINSIGHT22, ncRVIS31, Orion21

and ReMM19. We downloaded pre-computed genome-wide scores for each of these
metrics (hg19 reference build). In the minority of cases where a per alternative
variant score was provided, we used the most “deleterious” value at each position.
For the metrics that solely provide scores for the genic portion of the genome, the

p = 7.6e-11

p = 7.7e-5 p = 1.1e-9

p = 1.1e-11

p = 0.005

p = 8.9e-06

p = 0.005

n.s

n.s

n.s n.s

n.s

n.s

n.s
n.s

n.s

0.6
= ASD

= Control

= random

= functional

= random (same locus)

= random (GW)

0.4

0.2

Fr
ac

tio
n 

of
 d

el
et

io
ns

w
ith

 ≥
1 

es
se

nt
ia

l r
eg

io
n

0.0

1.00

0.75

0.50

0.25Fr
ac

tio
n 

of
 r

eg
io

ns
w

ith
 ≥

1 
es

se
nt

ia
l r

eg
io

n

0.00

1.

2.

3.

4.

5.

6.

7.

8.

Human
Duplications

ncER ≥ 95.0

ncER ≥ 99.0

ncER ≥ 99.9

ncER ≥ 99.5

syndactyly
syndactyly/craniosynostosis

219,900,000 219,950,000 220,000,000 220,050,000
hg19 chr2100 kb

9.

10.

11.

12.

13.

14.

15.

200 bp

>95 >99
ncER percentile threshold

ncER percentile threshold

ncER > 95th percentile

ncER > 99.9th percentile
ncER > 95th percentile

Intron
ncRNA
Cis Regulatory
Enhancer and others
Histone marks

ncER > 99.5th percentile
ncER > 99th percentile

>99.5 >99.9

>95 >99 >99.5 >99.9

a

b

c

d

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13212-3

6 NATURE COMMUNICATIONS |         (2019) 10:5241 | https://doi.org/10.1038/s41467-019-13212-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


respective features were calculated by mapping each non-coding genomic position
to the nearest gene and assigning the corresponding metric score to the genomic
position.

Training variant set. We used a total of 10,298 SNVs to train the model. The
pathogenic dataset comprised non-coding SNVs, located at least 10 bp from the
nearest splice site, obtained from HGMD (2016_R1)29 and ClinVar (July 2016)28.
The selection criteria for HGMD SNVs were “DM and high” tags, while for
ClinVar, SNVs had to be labeled as “Pathogenic” or “Likely Pathogenic”, with star
1 or more and no conflicting assertion. HGMD was further filtered out for variants
overlapping SNVs annotated as “benign” or “likely benign” in ClinVar (with star 1
or more and no conflicting assertion). Finally, only variants that were not within
500 bp of another pathogenic variants were retained (N= 782). The size of 500 bp
was fixed to the non-genic feature with the lowest resolution (CDTS), to prevent
overweighting of some genomic regions in the model, but still allowing for sub-
genic genomic element resolution. In the presence of a cluster of variants, the
variant with the smallest start coordinate was selected, followed by the next variant
with at least 500 bp distance from the selected variant, etc. The pathogenic variants
used to train the model are provided in Supplementary Data 1 (and referred to as
“training” in the variant set column). The control genomic training set consisted of
9516 variants chosen from a larger set of variants that were present in the gnomAD
dataset at an allelic frequency >1% and matched for the distance to the nearest
splice sites and genomic elements. The matching was performed as follows: all
pathogenic variants and gnomAD variants with allelic frequency >1% were
annotated with their respective distance to the closest splice site and the genomic
element they mapped to (see Reference build, annotation and genomic element
categorization section). For each pathogenic variant, the subset of control variants
falling within the same genomic element was extracted. Within this subset, the
closest 15 control variants with the most similar distance to splice site as compared
to the pathogenic variant were kept. Finally, duplicated control variants (if any)
and falling within 500 bp of another control variant were removed from the final
set. A total of 80%/20% of the variants were, respectively, used as training/test sets.
In addition, to prevent overfitting, the training/test set variants were split per
chromosome regions as follows: the test set encompassed pathogenic variants
located on chromosomes 1 (upstream-centromeric region), 10, 19 (upstream-
centromeric region), 6 (downstream-centromeric region) and X (downstream-
centromeric region), while the training set included the remainder of the chro-
mosomes and/or chromosomic regions. The pathogenic variants used to test the
model are provided in Supplementary Data 1 (and referred to as “test” in the
variant set column).

Machine learning model. We trained an XGBoost model in order to differentiate
between pathogenic and control genomic positions in our training set. Hyper-
parameters were tuned using fivefold cross validation and a randomized search
method. A total of 1000 sets of randomly selected hyperparameters were eval-
uated using fivefold cross validation, and the model that achieved the highest
ROC-AUC score was selected. These hyperparameters were then used to train
the final model on the entirety of the training set. After hyperparameter tuning,
we found that using 32 estimators, a maximum depth of 31, a learning rate of
0.31, and a minimum child weight of 6.17 maximized model performance. We
evaluated our model with ROC AUC and PR AUC on the test set (representing
20% of the data).

We annotated each position in the genome with our set of features and used the
tuned XGBoost model to make a functionality prediction at each genomic position
to score the entire genome. Of note, the model is trained to assess variants and
regions of the non-coding genome, and therefore is not relevant for the scoring of
protein coding regions.

Validation sets. The generalization of the model was assessed on two independent
sets of variants. The non-coding pathogenic sets included 209 and 77 new HGMD
and ClinVar variants29 mapping outside/inside ncRNA genes (HGMD 2017_R2
and ClinVar January 2018), at least 500 bp from any pathogenic variants from the
training and test sets and from one each other. The control genomic validation sets
consisted respectively of 2,090 and 770 variants in the gnomAD dataset at an allelic
frequency > 1% and matched to the pathogenic sets for the distance to the nearest
splice sites and genomic elements as explained above and at least 500 bp from any
control variants from the training and test sets and from one each other. The
pathogenic variants used to validate the model are provided in Supplementary
Data 1 (and referred to as “generalization_other” and “generalization_ncRNA” in
the variant set column).

Mendelian variants. To explore ncER percentile distribution of highly likely
pathogenic variants, we used a manually curated set of pathogenic non-coding
variants associated with Mendelian traits24, and selected those falling at least 500
bp from any pathogenic variants from the training/test sets, yielding a set of 85
dominant and 52 recessive non-coding pathogenic variants. The pathogenic
Mendelian variants are provided in Supplementary Data 3. The control genomic
variants (N= 13,659) consisted of singleton variants from the gnomAD whole-
genome sequencing datasets matched to the pathogenic sets for the distance to the
nearest splice sites and genomic elements as explained above.

GWAS variants. We used GWAS hit SNVs from GWAS catalog (https://www.ebi.
ac.uk/gwas; downloaded on 4 April 2018). We parsed the data to retain only the
most significant SNV per locus per phenotype and per study and keep a maximum
of one variant per genomic coordinate, yielding to 1785 phenotype-associated
variants. GWAS variants are provided in Supplementary Data 1 (and referred to as
“gwas” in the variant set column). The control genomic variants (N > 5 million)
consisted of common variants (allelic frequency > 0.05) from the gnomAD whole-
genome sequencing datasets and matched to the phenotype-associated set for the
distance to the nearest splice sites and genomic elements as explained above.

Reference build, annotation and genomic element categorization. All input
features and the model were mapped to the human reference build hg19. To
investigate the element distribution, we built an annotation track that combined
annotations from GenCode (v.27 mapped to GRCh37) and ENCODE (annotated
features and multicell regulatory elements, Ensembl v91 Regulatory Build) and
used a prioritization scheme to assign each genomic position a single annotation
category (described in ref. 24). In short, the prioritization was as follows: CDS >
Intron (cis—within 10 bp of a splice site) > ncRNA > UTR >multicell regulatory >
Intron (distal—more than 10 bp of a splice site) > annotated features. For Fig. 3,
Intron refers to intronic regions (from protein coding or non-coding genes),
ncRNA refers to exonic regions of non-coding RNAs, Cis Regulatory encompasses
promoters and untranslated regions (UTRs), Enhancers and Others encompasses
promoter flanking regions, enhancers, open chromatin, CTCF and other tran-
scription factor binding sites, Intergenic refers to unannotated regions and Histone
marks encompasses H3K9me3 and/or H3K27me3 as well as other histone marks
combinations.

ncER score. Two sets of ncER percentile scores were computed. The first with
nucleotide resolution and the second where raw ncER scores were averaged over
10 bp bins and then expressed as percentiles genome-wide. Both sets of percentiles
are provided at https://github.com/TelentiLab/ncER_datasets and can be browsed
directly at OMNI (https://www.ai-omni.com/). Intersection of ncER score with
other datasets was performed using bedops utility (v2.4.30)53.

Fig. 3 Mapping of critical domains in disease models. a Fraction of deletions with at least one high score ncER bin, defined at four different ncER percentile
thresholds. Autism and ASD deletions are shown in red (ASD, N= 120), control deletions in dark gray (control, N= 16) and random size-matched in silico
deletions extracted genome-wide in light gray (random, N= 13,600). See Supplementary Fig. 9 for distribution of other sizes of deletions. p Values were
computed with Fisher's exact test. b Schematic illustration of 15 unique <1 kb deletions (gray bars) identified in autism and ASD probands that harbor high
score ncER regions (highlighted in yellow, orange, red and dark red, based on the ncER thresholds). The corresponding genomic elements are displayed
under the deletions. Introns are shown in blue, ncRNA in magenta, cis regulatory in dark green, enhancers and others regulatory elements in light green and
histone marks in light pink (see Methods for categorization of genomic element classes). c The upper panel pictogram is adapted from ref. 37 and illustrates
the human IHH genomic locus associated with developmental defects including craniosynostosis and synpolydactyly35,36. It harbors the nine enhancers
identified in mice (from Will et al.37), represented in dark red ovale shapes. Lower panel, UCSC genome browser view of the region in the locus. The gray
box inset highlights the region of high ncER scores across human pathogenic duplications, the blue box highlights the maximal overlap of genomic lesions in
humans, and the green box that includes the IHH region present in duplications causing syndactyly Leuken type engineered in Will et al.37. d Fraction of
regions with at least one high score ncER, defined by four different ncER percentile thresholds. Mouse to human mapped enhancers are shown in red
(“functional”, N= 9), random size-matched in silico deletions extracted from the same locus (“random same locus”, N= 900) in dark gray and random
size-matched in silico deletions extracted genome-wide (“random GW”, N= 900) in light gray. p Values were computed with Fisher's exact test. GW
genome-wide, ASD autism spectrum disorder

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13212-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5241 | https://doi.org/10.1038/s41467-019-13212-3 | www.nature.com/naturecommunications 7

https://www.ebi.ac.uk/gwas
https://www.ebi.ac.uk/gwas
https://github.com/TelentiLab/ncER_datasets
https://www.ai-omni.com/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


External datasets. The CRISPRi coordinates and scores used for analyses displayed
in Fig. 2a, b and Supplementary Fig. 8 were obtained from Fulco et al.32 (http://
science.sciencemag.org/highwire/filestream/686019/field_highwire_adjunct_files/2/
aag2445_Table_S2.xlsx). As recommended in their paper, the CRISPRi scores were
smoothed over 20 subsequent pairs. Only regions that were assessed by at least 20
different pairs and <1 kb long (to prevent size biases) were retained for analysis,
resulting in a total of N= 77,368 remaining probed pairs. After removing probes
overlapping with protein coding region, we retained 75,622 sgRNA pairs.

CREST-seq peaks coordinates used for analyses displayed in Fig. 2c and
Supplementary Fig. 10 were obtained from Diao et al.33 (https://media.nature.com/
original/nature-assets/nmeth/journal/v14/n6/extref/nmeth.4264-S7.xlsx). Statistical
enrichment of the 11,570 tested sgRNA pairs used for analyses in Supplementary
Fig. 9 were also obtained from ref. 33 (https://media.nature.com/original/nature-
assets/nmeth/journal/v14/n6/extref/nmeth.4264-S5.xlsx). The locus used for
random extraction of same size regions was chr6:30132133–32138339. The
matched size random extraction (both in the same locus and genome-wide) was
performed 100 times.

Cis regulatory transmitted deletions used for analyses displayed in Fig. 3a, b and
Supplementary Figs. 11–13 were obtained from Brandler et al.7 (http://science.
sciencemag.org/highwire/filestream/708877/field_highwire_adjunct_files/9/
aan2261_TableS7.xlsx, Replication CR Trans sheet). The matched size genome-
wide random extraction was performed 100 times.

The mouse enhancer data used for analyses displayed in Fig. 3c and
Supplementary Fig. 14 were obtained from Will et al.37 (https://media.nature.com/
original/nature-assets/ng/journal/v49/n10/extref/ng.3939-S1.pdf, Supplementary
Table S4). The mouse coordinates were mapped to human using CrossMap
(v.0.2.5. http://crossmap.sourceforge.net/) using the mm9ToHg19.over.chain.gz
chain. When the mouse enhancers were mapped discontinuously to the human
genome, the leftmost and rightmost coordinates in the human genome were used
as start and end, respectively. The locus used for random extraction of same size
regions was chr2: 219940039–220025587. The matched size random extraction
(both in the same locus and genome-wide) was performed 100 times.

Statistics. Statistical analyses and plotting were performed with R v3.4.3 (https://
www.R-project.org/), notably using the package ggplot2 (http://ggplot2.org/). Data
mining was performed using Python (v.2.7.11). The performance predictors in
Figs. 1 and 2, Supplementary Figs. 3, 4, 8 and 9, and Supplementary Tables 1 and 2
were assessed as follows: sensitivity or true-positive rate or recall is (TP/(TP+
FN)) × 100, specificity is (TN/(TN+ FP)) × 100, false-positive rate is (FP/(FP+
TN)) × 100, accuracy is ((TP+ TN)/(TP+ TN+ FP+ FN)) × 100, positive pre-
dictive value or precision is (TP/(TP+ FP)) × 100 and negative predictive value is
(TN/(TN+ FN)) × 100, where TP is a true positive, TN is a true negative, FP is a
false positive and FN is a false negative. For the comparison of proportions we used
Fisher’s exact test; for the comparison of distributions, we used independent two-
group Mann–Whitney unpaired test or Kolmogorov–Smirnov test.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Genome-wide ncER scores are also provided for download at https://github.com/
TelentiLab/ncER_datasets and can be browsed directly at OMNI (https://www.ai-omni.
com/).

Code availability
Code for the model is provided at https://github.com/TelentiLab/ncER_datasets.
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