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Genomic approaches for studying crop
evolution

Mona Schreiber1, Nils Stein1 and Martin Mascher1,2*
Abstract

Understanding how crop plants evolved from their wild
relatives and spread around the world can inform about
the origins of agriculture. Here, we review how the rapid
development of genomic resources and tools has made
it possible to conduct genetic mapping and population
genetic studies to unravel the molecular underpinnings
of domestication and crop evolution in diverse crop
species. We propose three future avenues for the study
of crop evolution: establishment of high-quality
reference genomes for crops and their wild relatives;
genomic characterization of germplasm collections;
and the adoption of novel methodologies such as
archaeogenetics, epigenomics, and genome editing.
of domestication in Southwest Asia should be consid-
Introduction
Since the Neolithic, humans have domesticated a large
number of different plant species to create a reliable
source of nutrition for themselves and their domestic
animals. Crop plants comprise a large variety of species
from diverse taxa that differ in habitat, growth habit,
and life cycle, such as annual grasses, perennial trees,
and medicinal herbs (Table 1, Fig. 1). However, world-
wide crop production is dominated by a few major
crops, such as wheat, rice, maize, potato, sugar cane, and
soybean [1], that serve globally as staples for human and
animal nutrition. By contrast, minor crops can be
broadly defined as a non-homogeneous group compris-
ing staple crops traditionally only of regional import-
ance, such as quinoa, teff, and African rice; or crops of
world-wide importance but comparatively little contri-
bution to human food consumption such as nuts or
small fruits. Active research and breeding communities
exist for almost every crop plant; however, research into
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the molecular genetics of domestication has focused
mainly on the major crops [2].
Crop domestication has been studied for more than

a century and benefited recently from technological
innovations in genomics. Comparative analysis of
population genomic data of large samples of current
and past varieties of crops together with their wild
progenitors provides insight into the domestication
history of species [3, 4], for example, (i) when and
where domestication occurred, (ii) how the domesti-
cates spread to new habitats and which genetic
changes accompanied this transition, and (iii) whether
gene flow has occurred between the crops and wild
relatives. A synthesis of archaeological and population
genetic data evidence indicated that the initial stages

ered a protracted process [5, 6] rather than a rapid
evolution of cultivated plants as presumed previously
[7–9]. The “democratization” of genomics [10, 11] has
now opened new avenues for understanding the gen-
etic consequences of domestication in a much wider
range of species from different centers of origin such
as Mesoamerica and Africa.
Much has been written on plant domestication. Re-

cent review articles have focused on convergent
phenotypic evolution [12], causative mutations affect-
ing phenotypic variation [13, 14], the effect of gene
functions on crop adaptation and selection mecha-
nisms [15], the reduction of genetic diversity and the
influence of epigenetic modifications [16], the impact
of genomic methods in future crop improvement [17],
the value of crop wild relatives [18], sequencing an-
cient plant DNA [19, 20], and general concepts in
plant domestication research [21–23]. Here, we focus
on the assembly of reference genome sequences for
domesticated plants and their wild relatives; surveying
sequence diversity in large diversity panels; and the
application of novel approaches such as epigenomics,
archaeogenetics, and genome editing to plant domesti-
cation research.
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Table 1 Examples of domesticated crops with domestication origin, available reference genomes and sequencing strategies.
Crop Botanical

name
Lifecycle Ploidy level Time of

domestication
Geographical
origin

Reference genome Genome
size

Sequencing strategy

African rice Oryza
glaberrima

Annual Diploid ~3 000 BP Upper Niger River? Wang et al. [200] ~860 Mb Sanger, Roche/454

Amaranth Amaranthus
spp.

Annual Tetraploid Aztecs?
~13th – 15th

century

Mesoamerica Clouse et al. [46] ~456 Mb Illumina, physical map

Apple Malus x
domestica

Perennial Diploid;
polyploid
karyotypes exist

Late Bronze
Age?
~2 000 – 1 500
BC

West-Asia Daccord et al. [157] ~651 Mb Illumina, PacBio,
optical map

Asian rice Oryza sativa Annual Diploid >6 200 BC China Kawahara et al. [201] ~500 Mb Sanger, Illumina,
Roche/ 454, optical
mapping

Barley Hordeum
vulgare

Annual Diploid ~10 000 BC Southwest Asia Mascher et al. [52] ~5 Gb Illumina, optical mapping,
genetic map, HiC

Beet Beta vulgaris Biennial Diploid Before 800 BC Middle East Dohm et al. [202] ~750 Mb Roche/454, Illumina,
Sanger

Bread wheat Triticum
aestivum

Annual Hexaploid ~10 000 BC Southwest Asia Zimin et al. [65] ~17 Gb Illumina, PacBio

Carrot Daucus
carota

Annual/
bie-nnial

Diploid Classical
antiquity

Central Asia (south-
west Asia)

Iorizzo et al. [49] ~473 Mb Illumina, Roche/454,
linkage map

Cassava Manihot
esculenta

Annual Diploid 10 000 –
5 000 BC in
South America

Amazon basin Wang et al. [203] ~770 Mb Illumina, Roche/454

Chickpea Cicer
arientinum

Annual Diploid ~10 000 BC Fertile Crescent Varshney et al. [204] ~740 Mb Illumina

Cotton Gossypium
hirsutum

Perennial Tetraploid ~6 000 –
5 000BC

India/Mexico Li et al. [205] ~2.4 Gb Illumina, genetic map

Cowpea Vigna
unguiculata

Annual Diploid ~4 000 BC West Africa Muñoz-Amatriaín et
al. [206]

~620 Mb Illumina, physical
map, genetic map

Emmer
wheat

Triticum
dicoccon

Annual Tetraploid ~10 000 BC Southwest Asia Avni et al. [58] ~12 Gb Illumina, genetic map,
HiC

Ginseng Panax
ginseng

Perennial Tetraploid Cultivated since
~3000 BC

China Jayakodi et al. [207] ~3.5 Gb Illumina

Intermediate
wheatgrass

Thinopyrum
intermedium

Perennial Hexaploid ~6 000 BC Central and south-
eastern Europe
to Anatolia

No reference available ~12.75
Gb

Genetic map [208]

Maize Zea mays Annual Diploid ~6 700 BC Mexico Jiao et la. [63] ~2.4 Gb PacBio, optical
mapping, Illumina

Oat Avena sativa Annual Hexaploid European Bronze
Age
~1 800 BC

Fertile Crescent In progress: The Oat Genome
Project [209]

~12 Gb

Pepper Capsicum
spp.

Annual Diploid ~4 000 BC South and Middle
America

Qin et al. [99] ~3.5 Gb Illumina, 10X, genetic map

Potato Solanum
tuberosum

Annual Autotetraploid ~ 7 000 –
6 000 BC

Andean region The Potato Genome Sequencing
Consortium 2011 [210]

~844 Mb Illumina, Roche/454,
Sanger

Pumpkin Cucurbita
maxima

Annual Tetraploid ~8 000 BC South America Sun et al. [47] ~378 Mb Illumina, genet map

Quinoa Chenopodium
quinoa

Annual Tetraploid > 5 000 BC Mesoamerica Jarvis et al. [32] ~ 1.5 Gb PacBio, Illumina,
optical mapping

Rapeseed Brassica
napus

Annual Tetraploid ~400 – 500 BP Europe Yang et al. [211] ~1.13 Gb Illumina, PacBio,
optical mapping

Raspberry Rubus idaeus Perennial Tetraploid ~450 BP Europe and
northern Asia

Van Buren et al. [48] ~293 Mb
(black
raspberry)

Illumina, genetic map

Rye Secale cereale Annual Diploid European Bronze
Age
~1 500 –
1 000 BC

Europe Bauer et al. [212] ~7.9 Gb Illumina, genetic map

Sorghum Sorghum
bicolor

Annual Diploid ~7 100 –
6 900 BC

Sahel McCormick et al. [213] ~730 Mb Illumina, Roche/454,
Sanger

Sugar cane Saccharum
spp.

Perennial Allopolyploid ~8 000 BC Southeast Asia Riaño-Pachón et
al. [214]

~10 Gb Illumina
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Table 1 Examples of domesticated crops with domestication origin, available reference genomes and sequencing strategies.
(Continued)
Crop Botanical

name
Lifecycle Ploidy level Time of

domestication
Geographical
origin

Reference genome Genome
size

Sequencing strategy

Sunflower Helianthus
annuus

Annual Diploid ~6 000 BC Eastern North
America

Badouin et al. [215] ~3.6 Gb PacBio, genetic map

Tomato Solanum
lycopersicum

Annual Diploid Before 15th

century
Andean region The Tomato Genome

Sequencing Consortium
2012 [216]

~900 Mb Roche/454, Illumina
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High-quality reference sequence assemblies for
crops and their wild relatives
Extant crop wild relatives are excellent tools to under-
stand crop evolution and as sources of novel allelic di-
versity for future crop improvement [24, 25]. The wild
gene pool of a crop includes its wild progenitor species,
with which it is often fully interfertile, and species from
the same or closely related genera that can differ greatly
in divergence times and interfertility with the crop [26].
An unbiased assessment of genetic diversity in distantly
related taxa using the single reference genome sequence
of the domesticate is complicated by sequence diver-
gence, which prevents the alignment of short reads, es-
pecially in non-coding regions. Comparison of short
reads to a single reference will also not reveal structural
variants such as chromosomal inversions and transloca-
tions. Thus, reference genome sequence assemblies of
crop wild relatives are important tools to understand do-
mestication history.
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Fig. 1 Time of domestication and genome size of domesticated plants.
Genome sequencing and assembly have been applied
to many different species for decades. In the context of
plant domestication research, genomic resources such as
high-quality reference genome sequences of crops and
their wild relatives, but also dense genetic and physical
maps, have provided the infrastructure for the genetic
mapping of loci underlying key domestication traits [27,
28] and their subsequent isolation by map-based cloning
[29–32]. Genome sequence assemblies serve as common
references for the alignment of resequencing data from
diversity panels comprising crops and their wild progeni-
tors [33, 34], thus underpinning genome scans for
phenotypic associations and for targets of selection
under domestication [3, 35]. In the past, the large size,
repeat-rich structure and polyploid nature of many crop
genomes have been major impediments to the construc-
tion of contiguous sequence assemblies [36]. Here, we
summarize recent developments in sequencing technol-
ogy and computational methods that have contributed
of domestication
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to overcoming these long-standing obstacles; provide re-
cent examples for the construction of high-quality refer-
ence for crops and their wild relatives; and outline
future directions.
The traditional approach of laborious and time-

consuming Sanger sequencing along a minimum tiling
path of bacterial artificial chromosomes (BACs) [37]
has been attempted for only a few crops with small
genomes such as rice [38] or crops of the highest eco-
nomic importance—and commensurate research fund-
ing—such as maize [39], wheat [40], and barley [41].
In the latter two species, progress in sequencing and
genome mapping technologies has prompted the re-
spective international sequencing consortia that set
out years ago with physical map construction to revise
their strategy by adopting short-read sequencing [42,
43]. Wet-lab protocols and computational methods for
genome sequence assembly using short Illumina reads
were established about a decade ago [44, 45]. The gen-
eral approach of genome sequence assembly is shown
in Fig. 2 and can be summarized as follows: (i) contig
assembly from deep-coverage paired-end reads; (ii)
scaffolding with mate-pair information; (iii) filling of
sequence gaps introduced in this step; and (iv)
high-level ordering of sequence scaffolds into so-
called pseudomolecules as representatives of entire
chromosomes (‘superscaffolding’). A large number of
crop plant genomes have been sequenced using this
method, including minor crops such as amaranth [46],
Assembly

Superscaffolding

Pseudomolecules

Libraries
of different
insert sizes

Error
correction

• Genetic maps
• Bionano
• 10X Chromium
• Hi-C
• Dovetail

Short read
Sequencing

Long read
Sequencing

Fig. 2 Genome sequence assembly from short-read and long-read
data together with genome mapping technologies. Either short or
long reads can be used to assemble sequence contigs and scaffolds,
which can be ordered along the chromosomes by a battery of
super-scaffolding methods.
pumpkin [47], raspberry [48], and carrot [49]. Genome as-
semblies for 12 species in the genus Oryza, i.e., wild and
domesticated rice, and an outgroup species (Leersia
perrieri) provided a comprehensive overview of structural
genome evolution, thus contributing to the overarching
aim of the International Oryza Map Alignment Project to
establish genus-wide comparative genomics to discover
genes for crop improvement [50].
In the large-genome cereals wheat, barley, and rye,

short-read sequencing has been widely adopted to com-
pile complementary datasets for higher-order scaffolding
such as linkage maps [51, 52], physical maps [53], and
chromosome-specific sequences [54]. However, strong
reservations persisted against performing initial contig
assembly with short reads only. This skepticism was vin-
dicated by the mixed success of initial efforts in wheat
and barley. The gene space was reasonably complete and
approximately ordered along the genome with the help
of genetic and physical maps; however, sequence
contiguity was on the kilobase-scale and the repetitive
portion of the genome was severely underrepresented
[55–57]. Until recently, researchers were unwilling to
take the risk of amassing the large amount of sequences
required for short-read assembly of multi-gigabase crop
genomes without a proven strategy for assembling them.
In an eye-opening study, Avni et al. [58] constructed a

chromosome-scale assembly of the genome of tetraploid
wild emmer (genome size 10 Gb) from very deep Illu-
mina sequencing data from multiple paired-end, mate-
pair libraries and chromosome-conformation capture
sequencing data, thus establishing a precedent for the
construction of a high-quality sequence assembly of a
repeat-rich polyploid plant genome [59]. Several factors
contributed to the feasibility and success of their ap-
proach, such as improved library construction methods
ensuring uniform genome representation [60] and in-
creases in throughput and read length of the Illumina
platform (2 × 250 bp) accompanied by decreases in se-
quencing costs. One important caveat of the work by
Avni et al. [58] is that the software used to construct se-
quence scaffolds with megabase-scale contiguity is the
trade secret of a commercial service provider, NRGene.
Open-source alternatives for Illumina-only sequence as-
sembly exist and their results exceed assembly metrics
of previous efforts by an order of magnitude [61], but
they have not yet achieved the contiguity of the wild
emmer assembly.
Long reads (> 10 kb) from the PacBio or Oxford

Nanopore platforms are two orders of magnitude longer
than Illumina reads (100–300 bp) but have reduced
sequence accuracy [62]. Recently, PacBio sequencing
was used to construct a new version of the maize refer-
ence genome [63], which achieved a higher contiguity
and better genome representation than the previous
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BAC-by-BAC assembly [39] and corrected many errors
in the order and orientation of sequence contigs of its
predecessor. Schmidt et al. [64] used Oxford Nanopore
data to assemble the genome sequence of the tomato
wild relative Solanum pennellii (genome size ~ 1 Gb).
The resultant sequence scaffolds were highly contiguous
(N50 2.5 Mb) but required correction with supplemen-
tary Illumina reads to increase accuracy at the single
nucleotide level. Similarly, Zimin et al. [65] used a com-
bination of PacBio and Illumina data to reconstruct the
genome sequences of hexaploid bread wheat and its dip-
loid progenitor Aegilops tauschii [66]. The N50 values of
these assemblies are in the range of several hundred
kilobases, which confirms that long-read sequences can
produce better assembly than short-read technology
even in the most complex genomes, but also highlights
the necessity of obtaining short-read sequences for error
correction and complementary mid- and long-range
information to achieve chromosome-scale contiguity.
Another important drawback of using inaccurate long
reads are the immense computational requirements of
the assembly process (> 100,000 CPU hours for bread
wheat [65]).
Until recently, there was a ‘contiguity gap’ in the

assembly of complex plant genomes. The contiguity of
sequence assemblies was limited to kilobase-sized con-
tigs, but conventional methods for higher-order scaffold-
ing and assembly validation such as genetic mapping
[67, 68], cytogenetic methods [69, 70], BAC-based phys-
ical mapping [53, 71], or radiation hybrid mapping [72]
are effective only at the scale of megabases. Moreover,
these techniques are time-consuming and require
resources that are difficult or sometimes impossible to
generate (e.g., genetic maps in asexual organisms).
Methodology has improved dramatically over the past 3
years. Deep-coverage short-read sequencing of paired-
end and mate-pair can now deliver contigs of megabase-
scale contiguity in complex plant genomes. Furthermore,
a plethora of methods—many of them employing Illu-
mina sequencing—has been developed to validate,
correct, and improve initial sequence assembly from ei-
ther long or short reads (Fig. 2). Among the first of these
was optical mapping, a method that measures the dis-
tances of fluorescently labeled nicking sites in linearized
long DNA molecules to construct megabase-scale con-
tigs composed of molecules with matching labeling pat-
terns [73]. Optical mapping on the Bionano platform
has been used for scaffolding the PacBio assembly of the
maize genome [63] and for higher-order scaffolding of
BAC-based or chromosome-specific assemblies in wheat,
barley, and tetraploid finger millet [42, 74, 75].
One of the limitations of the current Bionano platform

is the need for input assemblies of high contiguity so
that sequence scaffolds comprise a sufficient number of
label sites to confidently align sequence assembly and
optical map. Technologies based on Illumina short-read
sequencing can better control data density by increasing
sequencing depth. One of these, the Chromium 10X
platform, employs a microfluidic device to create so-
called ‘linked reads’, which incorporate short barcode
sequences that are shared by reads originating from the
same high-molecular weight DNA fragment [76]. Chro-
mium reads serve as mid-range linkage information in a
similar manner as mate-pair reads or BAC end sequences,
but with the added value of longer span size (> 50 kb) and
multiple linked short reads that support connections be-
tween sequence scaffolds to effectively bridge repetitive re-
gions [77]. Intriguingly, deeply sequenced 10X libraries
can be used on their own for genome assembly. After
stripping of the barcode from the reads, 10X chromium
data can play the role of short-read sequences for assem-
bling by contigs, which are subsequently scaffolded by le-
veraging information on the molecular origin of reads
[78]. Hulse-Kemp et al. [79] used this approach to assem-
ble the genome sequence of bell pepper (Capsicum
annum) and achieved a scaffold N50 of 3.7 Mb.
Arguably, the most disruptive technology in recent

assembly for genome mapping has been chromosome
conformation capture sequencing (Hi-C). Hi-C was ori-
ginally developed as a method to assay genome-wide
chromatin contact probabilities [80], but it was soon
realized that the linkage information afforded by chro-
matin proximity can be effectively used for scaffolding
fragmented genome assemblies to chromosome-scale
contiguity [81, 82]. In addition to ordering and orienting
scaffolds, Hi-C can also effectively detect misassemblies.
Chromatin contact probabilities between pairs of loci are
strongly correlated to their distance in the linear genome
[42, 80, 83]. Thus, the likely cause for any strong devia-
tions from the expected rate of distance-dependent
decay of contact probabilities are misassemblies [84].
Hi-C mapping made it possible to order sequence scaf-
folds in the large (> 300 Mb) non-recombining proximal
regions of the barley [42] and tetraploid wheat [58] ge-
nomes, for which the construction of high-resolution
molecular marker maps of high density had remained
elusive [85]. Lightfoot et al. [86] used a combination of
Hi-C and PacBio long reads to increase the contiguity of
the genome assembly of amaranth to chromosome-scale
scaffolds. The principle of proximity ligation also un-
derlies the Chicago method, which derives linkage in-
formation from Hi-C libraries constructed from
chromatin reconstituted in vitro from high molecular
weight DNA [87] and is offered commercially by Dove-
tail Genomics. Dovetail scaffolding was used to improve
the assembles of model plants [88, 89], such as lettuce
[90], quinoa [32], and an individual chromosome of
hexaploid wheat [91].
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We believe it is possible to obtain for any plant
taxon—wild or domesticated—a high-quality reference
genome sequence assembly within a year’s time frame
without prior resources. But, which is the most cost-
effective combination of sequencing methods and
genome mapping approaches [88, 89]? A contiguous,
complete, and correctly annotated reference sequence
will support research into the contribution of ancestral
diversity in the wild progenitors, the footprints of artifi-
cial selection in the domesticate, and gene flow between
wild and cultivated taxa.
Genomic characterization of germplasm
collections
The wild progenitors of most crop plants remain extant
[92] and can be collected from the wild. Furthermore,
traditional landraces have been collected and stored in
germplasm collections (so called ‘genebanks’ or ‘seed
banks’) for more than a century. Germplasm collections
can provide the raw material for population genomic
studies to unravel the origin of crops, their demo-
graphic history, as well as past and present selection
pressures. Several strategies based on high-throughput
sequencing are available to catalogue and analyze gen-
etic variation in crop diversity panels, namely whole-
genome sequencing, exome capture, RNA sequencing,
and reduced representation resequencing. The key dif-
ference between these approaches lies in the fraction of
the genomes targeted for sequencing, which determines
the requirements for prior resources and the per sam-
ple cost (Table 2).
The most straightforward method for assessing genetic

diversity in species with a reference genome is shotgun
sequencing of short-insert libraries on the Illumina plat-
form and alignment of the sequence reads to the refer-
ence assembly [93]. Whole-genome shotgun sequencing
has been used in major crops such as maize [3, 94], rice
[33, 95, 96], soybean [97], and Solanaceous species [98,
99] to study genome-wide sequence diversity in the crop
and its wild relatives with a focus on domestication his-
tory and the genetic basis of crop improvement. In rice,
whole-genome sequencing and phenotyping of diversity
panels, together with efficient transgenic methods for
testing candidate gene function, has emerged as a
powerful approach for isolating genes of agronomic im-
portance [95, 100]. Deep-coverage whole-genome se-
quencing data of multiple individuals is a prerequisite
for advanced population genetic methods to infer demo-
graphic history such as the Pairwise-Sequentially Mar-
kovian Coalescent model [101] and its derivatives [102,
103], which were used to study historic changes of popu-
lation size in maize [104], grapevine [105], African rice
[106], and their respective wild progenitors.
An important drawback of whole-genome sequencing
is the financial burden associated with amassing suffi-
cient sequence data for large diversity panels in minor
crops or those with large genomes. Several techniques
have been developed to reduce genome complexity prior
to sequencing so as to increase read depth in certain
genomic regions. Sequence capture with oligonucleotide
baits can be applied at the scale of whole exome [107] or
gene families [108]. For example, whole-exome capture
assays have been developed in wheat [109, 110] and bar-
ley [111] and applied in population genetic studies. Rus-
sell et al. [112] analyzed exome sequences from > 250
wild and domesticated barleys to understand contrasting
patterns of diversity in both taxa and to study changes
in haplotype structure of flowering time genes during
range expansion. Similarly, Avni et al. [58] used exome
capture data from 65 accessions of wild and domesti-
cated emmer to detect genomic regions under selection.
Resistance gene enrichment sequencing (RenSeq) was
originally developed to enable rapid mapping of nucleo-
tide binding-site leucine-rich repeat resistance genes in
mutant collections and segregation populations [108,
113], but has been recently adopted by Arora et al. [114]
for association genetics and applied to gene isolation in
Aegilops tauschii, a wild diploid progenitor of bread
wheat. Witek et al. [115] combined resistance gene en-
richment sequencing with PacBio sequencing to clone a
resistance gene against potato late blight disease in Sola-
num americanum, a diploid, non-tuber bearing wild
relative of potato.
High-throughput RNA sequencing (RNA-seq) [116] is

an alternative to whole-exome capture that does not re-
quire the design of oligonucleotide baits and can assess
sequence variation for a large portion of the transcribed
part of the genome. For example, Nabholz et al. [117]
used RNA-seq to study domestication bottlenecks in Af-
rican rice. As a method to quantify transcript abun-
dance, RNA sequencing affords information on gene
expression levels in addition to genetic variation. Koenig
et al. [34] performed RNA-seq on tomato and related
Solanum species to detect footprints of selection based
on genetic variation at the DNA sequence level, and also
found selection pressure on gene expression level in the
domesticate. Lemmon et al. [118] analyzed allele-specific
expression in F1 crosses between maize and teosinte to
understand the changes in the regulatory architecture of
gene expression as a consequence of domestication.
Reduced representation sequencing [119] is known

by many names such as RAD-seq [120], genotying-by-
sequencing (GBS) [121], or SLAF-seq [122]. The com-
mon denominator of all these methods is genomic
complexity reduction by digestion with restriction en-
zymes and subsequent short-read sequencing of frag-
ments bordering restriction sites. We will now use the
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term ‘genotyping-by-sequencing (GBS)’ as it captures
the essence of these methods: they do not produce
resequencing data for a gene set, but apply high-
throughput sequencing to obtain dense genome-wide
marker data. As such, GBS is similar to genotyping
with SNP chips. In contrast to SNP chips, however, no
prior knowledge and expenses are required to develop
genotyping assays and ascertainment bias [123] is re-
duced. Challenges in the analysis of GBS data include
allelic dropout [124] and handling of missing data
[125, 126]. In principle, GBS data can be analyzed
without a reference genome [127, 128], but care needs
to be taken in the interpretation of estimates of popu-
lation genetic parameters [129].
GBS is a versatile and inexpensive method for natural

and experimental populations of crops and their wild
relatives. Linkage maps for wild relatives of Triticeae
crops [130–132] and crop–wild cross in tomato [133]
have been constructed in recent years. Moreover, GBS
has been used to characterize crop–wild introgression
lines in barley [134] and tomato [135]. In addition to the
analysis of experimental populations, GBS has been
widely adopted for population genetic studies. For ex-
ample, it has been used to compare diversity between
crops and their wild progenitors in chickpea [136], am-
aranth [137], and cassava [138]; to study geneflow be-
tween wild and domesticated sunflower taxa [139, 140];
and to elucidate the demographic history of wild Phaseo-
lus vulgaris, the progenitor of common bean [141].
Moreover, GBS is a cost-effective method to screen

large germplasm collections. For example, Romay et al.
[142] used GBS to study genetic variation in 2815 maize
inbred lines maintained at the US national seedbank. If
used at the scale of entire collections, GBS holds the po-
tential of developing molecular passport data for gene
bank management, complementing traditional morpho-
logical markers and field evaluation. This can help re-
solve issues regarding (i) duplication within and between
gene banks around the world [143], (ii) the genetic in-
tegrity of accessions after decades of ex situ maintenance
[144, 145], and (ii) the development of truly representa-
tive core collections [146] to be subjected to
whole-genome sequencing [147] and in-depth phenotyp-
ing. The power of this approach was exemplified by a re-
cent study in maize. Navarro et al. [148] genotyped and
phenotyped a panel of > 4000 F1 hybrids between elite
breeding material and diverse landraces sampled from
the collection of the International Maize and Wheat Im-
provement Center (CIMMYT). Genome-wide associ-
ation scans revealed a co-association of genes to both
flowering time and altitude. Similar approaches are un-
derway in other cereal crops such as wheat [149], barley
[150], common bean [151], Solanaceous crops [152], and
rice [153]. As more genotypic and phenotypic data for
large germ plasm collections accrue, strategies for the ef-
fective utilization of plant genetic resources into breed-
ing without inflicting yield losses are needed [154].

Novel approaches to domestication research
High-throughput sequencing has also been used to ob-
tain measurements on aspects of the genome other than
nucleotide sequence variation. Here, we describe future
directions in domestication research that will benefit
from these technological innovations, such as epige-
nomics, archaeogenetics, genome editing, domestication
of novel crops, and new computational methods for ana-
lysis of population genetic data (Fig. 3).
Epigenomics refers to the study of the entirety of her-

itable changes other than changes in DNA sequence,
such as DNA methylation or histone modifications. The
interaction between euchromatin and heterochromatin
likely plays a role in silencing of transposable elements
and influences gene expression [155]. Compared to gen-
etic diversity, little is known about epigenetic diversity in
crops, which may prove an untapped reservoir of useful
variation for crop improvement [156]. Some important
initial results have been published recently. Daccord
et al. [157] generated an improved genome assembly of
domesticated apple and created a genome-wide map of
DNA methylation. Their results hint at a potential role
of epigenetic marks in the expression of agronomic traits
in perennial fruit trees. Epigenetic regulation is of par-
ticular importance to study the relationship of subge-
nomes in polyploid crops such as wheat [158], cotton
[159], and rapeseed [160].
Archaeogenetics—the extraction, sequencing, and ana-

lysis of ancient DNA fragments—has transformed our
concepts of the history of human and animal species
[161–163]. Until recently, plant genetics has not had ac-
cess to this window into the past, mainly owing to a
paucity of archaeobotanical remains containing sufficient
amounts of well-preserved DNA [164, 165]. Recent stud-
ies in maize and barley retrieved DNA sequences from
samples preserved under arid conditions and analyzed
them together with sequences from extant individuals.
da Fonseca et al. [166] thus reconstructed the past dem-
ography of maize in the southwest United States.
Mascher et al. [167] reported a close genetic affinity of
6000-year- old barley grains from the Judean desert to
present-day landraces from the Southern Levant. Swarts
et al. [168] employed genomic prediction models trained
on modern data to understand the temporal dynamics of
adaption to temperate climates as maize cultivation
spread northwards.
Genome editing with CRISPR-Cas9 technology [169]

has enriched the plant geneticist’s toolkit [170]. The
rapid induction of targeted mutations will be instrumen-
tal in validating putative domestication genes in the wild
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Fig. 3 Future directions of domestication research. The study of crop evolution will continue to rely on the population genetic analysis of diversity panels
comprising domesticates and their wild relatives. If well-preserved archaeobotanical remains are available, ancient samples can serve as a
time-capsule informing about past demography of a crop. Moreover, new approaches such as epigenomics and gene editing will enrich
the toolbox of domestication research.
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individuals and creating novel useful variation in the do-
mesticate. For example, Soyk et al. [171] isolated two
regulators of inflorescence architecture in tomato by
means of map-based cloning and validation through
classic mutants and CRISPR-Cas9 knock-out. Naturally
occurring mutations in both genes had been independ-
ently selected either to increase fruit size or to facilitate
mechanical harvesting. However, due to negative epi-
static interaction between both genes, combinations of
alleles that are beneficial on their own resulted in loss of
fertility and excessive branching. Soyk et al. [171] then
evaluated allelic series of both loci for epistatic interac-
tions and found new beneficial allelic combinations that
overcame negative epistasis. Braatz et al. [172] used
CRISPR-Cas9 in tetraploid oilseed rape (Brassica napus)
to knockout simultaneously both homeologs of ALCA-
TRAZ, a known regulator of seed shattering in Arabi-
dopsis [173]. Siliques of double mutants were partially
resistant to shattering, an important trait to avoid seed
loss during mechanical harvesting.
The domestication of new plant species has been pro-

posed as an important future contribution to sustainable
agriculture. For instance, the development of perennial
grain crops has received considerable attention [174,
175]. Progress has been made in bringing intermediate
wheatgrass (Thinopyrum intermedium; Fig. 1), a per-
ennial relative of wheat, into cultivation with the es-
tablishment of dense linkage maps [131] and the
implementation of genomic selection [176]. The do-
mestication of bioenergy crops has been put forward
to meet the growing demands for biofuel. Proposed
targets include the aquatic fern Azolla [177], Mis-
canthus species [178], and the duckweeds [179].
As large population genomic datasets accrue in more

species, analysis methods need to keep pace with the
growing amount of input data. Efficient data structures
have been devised to structure and handle large marker
matrices [180, 181]. Imputation strategies to infer miss-
ing genotypes in low-coverage sequence data have been
adopted in human genetics [182, 183]. Moreover, imput-
ation methods, which take into account inbreeding or
are geared towards experimental populations, have been
developed specifically for plant genetics [184]. We ex-
pect genotype imputation to be widely used in plant
genetic studies as comprehensive haplotype reference
panels become available [185]. As an alternative or
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complement to the imputation of discrete allelic states,
statistical uncertainties in genotype calling from shallow
sequencing data can be recorded and considered during
population genetic analyses [186, 187].
New algorithms have been developed to speed up trad-

itional analysis methods such as principal component ana-
lysis [188, 189] and statistical inference of population
structure [190]. These include flashpca [191], FastPCA
[192], fastSTRUCTURE [193], ADMIXTURE [194], and
sNMF [195]. Methods for understanding past demo-
graphic processes such as bottlenecks and migration
events include genome-wide comparisons of allele fre-
quencies from dense genomic marker datasets [196, 197],
fitting coalescent models to whole-genome sequence data
[100, 101], and computational environments for demo-
graphic simulations [198, 199].
In summary, progress in sequencing technology and

analysis methods will make it possible to study the gen-
etics and genomics of domestication in a wider range of
crop species. In the coming years, chromosome-scale
reference sequence assemblies and resequencing studies
of large diversity panels will contribute to understanding
the past and present diversity of domesticated plants
and their wild relatives.
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