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Rainbow trout

Rainbow trout and Salmonids commercial importance

Members of the salmonid family (Fig. 2.1) are present worldwide and many of them 
are species of major importance for aquaculture, wild stock fisheries or recreational 
sport fisheries. Their world aquaculture production was estimated over 3,000,000 
metric tons (MT) with a global commercial value over US$ 17 billion in 2013, with 
Atlantic salmon being the most important farmed salmonid species with world aqua-
culture production accounting for 2,000,000 MT. Rainbow trout is a species native to 
western North America, but is considered as one of the most widely introduced fishes. 
According to FishBase (http://www.fishbase.org), rainbow trout is now recorded to 
be present in at least 70 different countries with a distribution in nearly all of the 
world’s continents. Although its farming receives less attention than Atlantic salmon, 
the production data for rainbow trout are still quite impressive. Total world production 
reached 500,000 MT for the first time in 2001 and was recorded in 2013 as being over 
800,000 MT with a total export value around US$ 3.5 billion. More than one third of 
this production currently comes from Asia (310,000 MT) with a significant production 
both in Iran (140,000 MT) and Turkey (130,000 MT), the remaining production being 
produced in America (220,000 MT) and Europe (280,000 MT). In Europe, Norway 
is the major producer of rainbow trout with 20% of the total European production 
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(70,000 MT), followed by Italy (34,000 MT), France (29,000 MT), Russia (24,000), 
Spain (15,000 MT), United Kingdom (12,000 MT), and Finland (12,000 MT). More 
than 20 additional European countries share the remaining production. The majority 
of American production is localized in Chile (140,000 MT) and the production in the 
United States of America although rather modest (26,000 MT) was still worth $90 
million in annual sales in 2013, and this does not include the industry aimed at resto-
ration, conservation and recreation.

Rainbow trout: a freshwater laboratory rat

Beside its economic importance, rainbow trout has also been extensively used as a 
model of investigation in disciplines as diverse as cancer research, toxicology, com-
parative immunology, disease ecology, physiology, nutrition, and developmental and 
evolutionary biology (Thorgaard et al., 2002). O. mykiss is one the most studied fish 
species, with many experimental advantages including the availability of multiple nat-
ural populations (Behnke et al., 2002) and clonal lines (Komen and Thorgaard, 2007; 
Quillet et al., 2007), an easy breeding and the possibility to perform transgenesis 
(Thorgaard et al., 2002) and gene inactivation (Yano et al., 2014). Its relatively large 
body size compared to model fish like zebrafish or medaka makes rainbow trout a 

Figure 2.1  Salmonids evolution. The rainbow trout, Oncorhynchus mykiss, belongs to 
the salmonid (salmonidae) family that contains three sub-families, that is, the Salmoninae 
(mostly trouts, chars, and salmons), the Thymallinae, (graylings) and the Coregoninae 
(whitefish and ciscos). Salmonids diverged from their closest sister group, that is, Esocidae 
(pikes and mudminnows) 110–150 Mya (Near et al., 2012) and the last common ancestor 
of extant salmonids is dated around 58–63 Mya (Crête-Lafrenière et al., 2012). The specific 
whole genome duplication of salmonids (Ss4R) is dated between 88 Mya (Macqueen and 
Johnston, 2014) and 96 Mya (Berthelot et al., 2014).
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well suited alternative model to carry out biochemical and molecular studies on spe-
cific tissues or cells that are much more difficult to analyze in smaller fish models 
(Thorgaard et al., 2002). In agreement with its major relevance to biomedical research 
and aquaculture, many genomic resources have been developed during the last two 
decades, including genetic and physical maps, BAC libraries and BAC end sequences, 
as well as numerous expressed sequence tags (see later sections for a synopsis of 
the genomic resources available in rainbow trout). Most of the needed presequencing 
phase genomic resources were then available when the first O. mykiss whole genome-
sequencing project was initiated in 2010.

Rainbow trout life cycle

Rainbow trout is a native species from the Northwest cost of North America where 
its natural distribution ranges from Alaska up to the north of Mexico (Behnke 
et al., 2002). It is mostly a freshwater species that inhabits lakes and rivers although 
there are populations, called steelhead trout that live in the ocean and have an anadro-
mous migration back to freshwater to spawn. Freshwater populations usually inhabit 
well-oxygenated rivers or lakes with preferundum temperatures ranging from 10 to 
16°C. Reproduction is generally taking place during spring with spawning occurring 
in cold well-oxygenated shallow rivers with fine gravel bottoms. One single female 
rainbow trout can produce 1–8 thousands eggs (3.5–6 mm) which are laid in one or 
multiple batches and immediately fertilized by sperm from a single male. Eggs fall 
between gravel spaces and usually hatch 4–5 weeks after fertilization. After vitellus 
resorption young fry emerge from the gravel substrate and start to feed essentially 
on zoobenthos and zooplankton prey. At the adult stage rainbow trout is an oppor-
tunistic feeder that relies on many different type of food ranging from small insects 
to crayfish.

Genomic aspects

The genome of rainbow trout per se is extremely interesting from an evolutionary ge-
nomics point of view. First of all, its genome is of respectable size, that is, 2.4 × 109 bp 
(Young et al., 1998), that is, 6 times bigger than the genome of the pufferfish (Roest 
Crollius et al., 2000), and even larger than that of the zebrafish, that is, 1.7 × 109 bp 
(Howe et al., 2013). Second, the genome of the rainbow trout is complex, with a chro-
mosome arm number (NF) equal to 104 and a variable diploid set of chromosomes 
ranging from 58 to 64 due to Robertsonian rearrangements (Thorgaard, 1976). One 
major reason for this complexity is an event of tetraploidization (whole genome dupli-
cation, WGD), which occurred in the salmonid lineage (the Ss4R: Salmonid-specific 
fourth round of WGD). The genomes of salmonids are then assumed to still be under-
going a process of rediploidization and this involves a differential evolution or loss 
of gene duplicates, a process called “divergent resolution” (Taylor et al., 2001) that 
has been proposed to reduce hybrid fitness and favor speciation. Such a phenomenon 
might have played an important role in the amazing richness of species observed in 
fish (Volff, 2005). Indeed, divergent resolution has been already reported in teleosts 
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subsequently to an ancestral genome duplication (third WGD or Teleost-specific third 
round of WGD = Ts3R) that took place between 225 and 330 million years ago (Mya)
(Hurley et al., 2007; Near et al., 2012; Santini et al., 2009), but only very divergent 
species have been compared. Salmonid genomes provide a unique opportunity to ana-
lyze the differential evolution of tetraploidized genomes that diverged more recently 
(Allendorf and Thorgaard, 1984) and to assess the differential evolution of duplicated 
genes during early steps of rediploidization.

The rainbow trout genome: diversity, 
structure, organization

Salmonids combine both the essential characteristics of being very important com-
mercial species and also species of considerable scientific importance with a key posi-
tion in the ray-finned fish evolutionary tree (Fig. 2.1). These combined applied and 
scientific interests have deeply stimulated a well-structured international scientific 
community in developing a large number of genomics tools that are now available in 
many salmonid species.

Genomic resources preexisting before the first genome 
sequence in rainbow trout

The size of the rainbow trout genome is about 2.4 × 109 bp (Young et al., 1998) and its 
G + C content is 42% (Bernardi and Bernardi, 1990). One of the problems that plagued 
the initial sequencing and assembly of the zebrafish genome was the extent of poly-
morphism within and between the individuals of the pooled group that was used as the 
source of the DNA for the project. This problem has subsequently been overcome by 
using a single, doubled haploid fish that was produced by androgenesis. In rainbow 
trout, doubled haploid individuals were successfully obtained using gynogenesis or 
androgenesis (Chourrout, 1984; Parsons and Thorgaard, 1985; Quillet et al., 1991), 
and used to produce homozygous clonal lines (Scheerer et al., 1991; Quillet et al., 
2007) that have been extensively characterized at genetic and phenotypic levels. Fully 
homozygous individuals were particularly desirable to develop genomic tools in rain-
bow trout, to deal with the high genome complexity that was anticipated because of 
the ancestral WGD in the species. The genomic DNA from a single doubled haploid 
fish (Swanson YY doubled haploid clonal line) was used to produce several rainbow 
trout bacterial artificial chromosomes (BAC) libraries. These BAC libraries have been 
fingerprinted to produce a first generation (Palti et al., 2011) and a second generation 
BAC physical map (Palti et al., 2012). Several linkage maps based on doubled haploid 
individuals and outbred populations have been constructed for rainbow trout using 
microsatellites and SNPs markers (Guyomard et al., 2012, 2006; Nichols et al., 2003; 
Rexroad et  al.,  2008; Sakamoto et  al.,  2000). A synthetic linkage map compiling 
previous ones was built (Guyomard et  al.,  2012) that comprised of 2,226 markers, 
with a medium density of 1 marker/cM.
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In parallel, many different tissues and developmental stages cDNA libraries have 
been constructed and sequenced in the rainbow trout (Govoroun et al., 2006; Koop 
et al., 2008; Rexroad et al., 2003). As of Jun. 2015, 290,406 expressed sequence tags 
(ESTs) sequences are publicly available in NCBI GenBank and these ESTs have been 
the basis for several cDNA and oligos microarray platforms in rainbow trout (Canario 
et al., 2008). Sequences from both ends of 96,000 trout BACs were also available and 
these BAC-end sequences have been used to create a first trout repeat database (Genet 
et  al.,  2011), showing that repetitive DNA accounts for approximately 58% of the 
genome. These BAC-end sequences were screened for microsatellites and were used 
to produce the first and a second generation integrated maps (Palti et al., 2012, 2011).

Rainbow trout genome sequencing

The strategy developed for sequencing the rainbow trout genome was based on the 
NGS sequencing technologies available in 2010 at the beginning of this genome proj-
ect. This genome was sequenced using a whole genome shotgun strategy (Berthelot 
et al., 2014) with genomic DNA from a unique doubled haploid (YY) rainbow trout 
male (Parsons and Thorgaard,  1985; Young et  al.,  1996). The availability of DNA 
from a totally homozygous individual has been a key resource that deeply facilitated 
the assembly of the rainbow trout genome. For the whole shotgun approach, single 
read, as well as 8 kb, 12 kb, and 20 kb mate-pairs libraries were sequenced using the 
454 titanium technology up to a 20-fold sequence coverage with 454 Titanium and a 
70-fold coverage using Solexa-Illumina sequences. Solexa-Illumina sequences were 
used to correct the contigs and scaffolds sequences resulting from the assembly of the 
454 Titanium reads that are known to be error-rich especially in stretches of homopol-
ymers (Gilles et al., 2011). This strategy was also complemented by a deep coverage 
of BAC-end sequences (Genet et al., 2011) that helped to scaffold contigs and to an-
chor the sequence onto the integrated maps. The total size of the resulting assembly of 
this first version of the rainbow trout genome (Berthelot et al., 2014) was 1.9 Gb with 
a scaffold N50 of 384 kb (half of the assembly is contained in 1,014 scaffolds longer 
than 384 kb). Using linkage and physical map information, scaffolds were anchored 
onto chromosomes at 898 distinct loci. Annotation of the genome sequence identified 
46,585 protein-coding gene models with supporting protein evidence from other verte-
brates and transcript evidence from 15 tissues of a doubled haploid rainbow trout adult 
obtained by RNA-seq. This high number of predicted protein-coding genes compared 
to other vertebrates is compatible with the recent Ss4R. 495 microRNA (miRNA) loci 
were also identified corresponding to 84 different families and 164 mature sequences. 
Transposable elements account for about 38% of the rainbow trout genome sequence.

Rainbow trout genome structure

The ancestral genome of teleost fish underwent a WGD event, termed here the teleost-
specific third WGD (Ts3R) (Hurley et al., 2007; Near et al., 2012; Santini et al., 2009), 
approximately 300 million years ago (Mya). The signature of this Ts3R is still present 
in modern teleost genomes and comes in addition to two more ancestral WGD events 
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common to all bony vertebrates (vertebrate genome duplications 1 and 2, VGD1 and 
VGD2) (Dehal and Boore, 2005). While WGD events are rare within animal lineages, 
they represent important evolutionary landmarks from which some major lineages 
have diversified. Duplicated genomes eventually retain only a small proportion of 
duplicated genes, while seemingly redundant copies are inactivated in a poorly under-
stood process termed gene fractionation (Langham et al., 2004). The genome structure 
of the rainbow trout is of particular interest in this context because salmonids have 
undergone an additional relatively recent WGD event (the salmonid-specific fourth 
WGD or Ss4R) that has been initially dated between 25 and 100 Mya (Allendorf and 
Thorgaard, 1984). Gene fractionation may thus be ongoing in that species, providing 
a unique opportunity to better understand the main determinants that influence this 
rediploidization process.

By reconstructing the Ss4R paralogous regions, the genome of rainbow trout al-
lowed the reconstruction of the ancestral karyotype of salmonids before the Ss4R 
duplication. The modern rainbow trout genome is organized in 38 major pairs of du-
plicated regions, and 14 out of 30 chromosomes result from the fusion of two different 
post-Ss4R chromosomes, in agreement with the known paralogies inferred from the 
trout linkage maps (Guyomard et al., 2012). Other chromosomes are more complex 
mosaics of different post-Ss4R chromosomes, reflecting additional inter-chromosom-
al rearrangements that have occurred since the Ss4R event (Fig. 2.2). Numerous ohno-
logs (i.e., paralogous genes formed by a WGD event) were identified in these Ss4R 
paralogous regions. The computed distribution of silent nucleotide substitutions (dS) 
among pairs of Ss4R ohnologs identified in rainbow trout, and between Atlantic salm-
on and rainbow trout pairs of orthologs (representative of the speciation divergence 
time, i.e., around 30 Mya, between these two species) allowed to estimate the date of 
the Ss4R at 96 Mya, in the upper range of the 25–100 Mya from previous estimation 
(Allendorf and Thorgaard, 1984) but in the same range (88 Mya) as another recent 
estimation (Macqueen and Johnston, 2014). These results contrast with the age of the 
Salmonidae family that has been estimated 50–60 Mya (Crête-Lafrenière et al., 2012), 
suggesting that the Ss4R occurred long before (> 30 Mya) the last common ancestor 
of extant salmonids (Fig. 2.1). This is consistent with the WGD Radiation Lag-Time 
Model (Schranz et al., 2012) that has been proposed in plants in which significant lag-
times are proposed to be needed between WGDs and the subsequent adaptive radia-
tions that are often associated with these WGD events.

Within a few million years after a WGD, genome evolution is thought to involve the 
loss of one gene copy of most ohnologous gene pairs by gene fractionation. This pro-
cess has never been documented at the whole genome scale in any vertebrate because 
all WGD studied to date are too ancient to capture such information. The rainbow 
trout genome enabled that analysis as high confidence paralogous regions can be eas-
ily characterized due to the more recent age of the Ss4R. Across the entire genome, 
around 50% of the Ss4R duplicated gene pairs have undergone gene fractionation 
and returned to a single copy state, while the remaining retained both ohnologs. Gene 
fractionation is thus a relatively slow process in the trout genome, since genes were 
inactivated at an average rate of approximately 170 genes per million years. Addition-
ally, the majority of singletons can still be paired with clear paralogous sequences 
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stemming from the Ss4R, although the latter are largely nonfunctional (pseudogenes). 
In contrast to this 50% retention rate of ohnologous protein-coding genes, we found 
that the post-Ss4R conservation of genes encoding microRNAs is nearly complete, 
with almost all microRNA ohnologs being conserved as duplicated Ss4R copies. This 
higher conservation does not seem to be simply the outcome of the shorter length of 
sequences coding for miRNA and might result from more subtle selective processes. 
Altogether, the high retention rate of ohnologous copies and of pseudogenes sug-
gests that the fractionation process is largely incomplete and still ongoing in the trout 

Figure 2.2  Schematic evolutionary history of the rainbow trout genome during the Ss4R  
WGD event. The Ss4R WGD resulted in a complete doubling of the genetic material, so every  
chromosome (and gene, associated with its regulatory regions) was present in two identical 
copies right after the Ss4R. The Ss4R WGD was followed by chromosome fusions and a few 
intrachromosomal rearrangements, bringing back the total number of chromosomes to 30, 
close to the preduplication karyotype. Rediploidization or gene fractionation, that is, the loss 
of duplicated genes after WGD by mutations and deletions to return to a mostly diploid state, 
is an ongoing process in the rainbow trout genome. At present, the duplicated regions within 
the genome (as exemplified by regions a and b in the boxed figure) are still highly collinear 
and retain both ohnologs for around 50% of the duplicated gene pairs. Ohnologs that are still 
present in both copies are slowly diverging at the sequence level, and may in the future acquire 
new or ancillary functions (neo- or sub-functionalization) or be lost via gene fractionation. 
Based on observations on older WGD events, only about 20–25% of duplicated genes are 
expected to be eventually retained in two copies (Howe et al., 2013).
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genome. At the genome organization level, the analysis of the Ss4R duplicated regions 
reveals a high colinearity between paralogous genomic sequences, consistent with 
a conserved order of ohnologs and no strong evidence of a clustering of singletons 
versus ohnologs throughout the genome. Together these observations show that gene 
fractionation does not involve many genomic rearrangements such as inversions or 
translocations that would modify the order of genes in the genome, or large deletions 
that would result in long clusters of singletons. The nucleotide sequence identity be-
tween paralogous genomic regions is still high (86%) and Ss4R ohnologous protein-
coding sequences and microRNAs are also highly conserved at the sequence level 
with 92.9% amino-acid identity and 96.4% nucleotide identity, respectively. In addi-
tion, the identity between the Ss4R protein-coding singletons and their corresponding 
pseudogenes remains high (average amino acid identity 79.0%) suggesting that most 
of these gene inactivations took place recently.

A genome for genetic and functional investigations

Deciphering the genetic architecture of traits

Quantitative trait loci (QTLs) are genomic regions (loci) associated to the phenotypic 
variation of a trait. Typically, a QTL is linked to, or contains, gene(s) that control the 
target trait. Therefore, using the polymorphism (molecular or sequence information) 
associated to the QTL regions is a way to improve the efficiency of selective breed-
ing by targeting the key regions that govern the variability of the target trait. Also, the 
identification of QTLs constitutes a step toward the molecular dissection of complex 
traits, the discovery of the genes that control functions of interest (causative genes) 
and their regulation.

Using the medium density genetic maps previously available (see earlier) and link-
age association methodologies (LA) in family QTL designs, a number of QTL have 
been detected in rainbow trout for many traits, with a special focus on adaptation and 
disease resistance traits (Baerwald et al., 2011; Le-Bras et al., 2011; Hecht et al., 2012; 
Verrier et al., 2013; Liu et al., 2014; Quillet et al., 2014; Vallejo et al., 2014). However, 
the confidence intervals of QTL positions are usually wide, making their exploitation 
difficult.

Together with the rapid evolution of NGS technologies, high-density genotyp-
ing methods are now available. For instance, the restriction-site associated DNA 
tags (RAD-tags) sequencing (Etter et al., 2011) enables cost effective identification 
of thousands SNP. In rainbow trout, RAD-tags based linkage maps were produced 
resulting in an increased marker density (Miller et al., 2012). RAD-sequencing was 
also used in an extended SNP discovery study where nearly 145,000 SNPs were 
identified (Palti et al., 2014) allowing the development of high-density genotyping 
chips like the 57 K SNP chip recently developed for rainbow trout (Palti et al., 2015) 
that is now commercially available. In such studies, having a reference genome 
sequence as a template is of great interest to order the newly discovered SNPs into 
maps or build local haplotypes. These high-density genotyping tools allow a radical 
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change in QTL mapping methods and enable the switch to methods exploiting link-
age disequilibrium (LD) and association analyses at the population level (LDLA, 
Genome Wide Association Study or GWAS) (Liu et al, 2015). This opens new areas 
for deciphering complex traits, and for the identification of genomic regions un-
der selection and the future implementation of genomic selection for aquaculture 
breeding.

Functional insights in Rainbow trout nutrition

Aquafeeds have been developed over the past thirty years for rainbow trout in aquacul-
ture based on the well-known nutrient requirements identified for this species. In the 
context of the development of sustainable aquaculture, it is imperative to develop new 
aquafeeds in order to replace dietary fish meal and fish oil (originating from threatened 
marine resources) by either plant ingredients or other ingredients (Naylor et al., 2009). 
This evolution of dietary composition necessitates an extensive knowledge of the in-
termediary metabolism mainly based on molecular approaches (Panserat et al., 2009; 
Panserat and Kaushik, 2010).

Selected examples of nutritional regulation of transcript levels

Nutrition and flesh quality: molecular LC-PUFA biosynthesis pathway is functional
One of the most important challenges after suppression of fish oil in aquafeed is to 
maintain high level of long-chain polyunsaturated fatty acids (LC-PUFAs, i.e., the 
docosahexaenoic acid—DHA—and the eicosapentaenoic acid—EPA) in the flesh 
(Monroig et al., 2013). Numerous studies in rainbow trout demonstrated that this spe-
cies has the molecular capacities to produce these LC-PUFAs from precursors found 
in vegetable oils. Indeed, higher levels of mRNAs coding for desaturase and elon-
gase enzymes were observed following suppression of fish oil in the diets (Seiliez 
et al., 2011). However, this induction is not sufficient to obtain the same level of mus-
cle LC-PUFAs compared to fish fed with fish oil. LC-PUFA biosynthesis in rainbow 
trout seems to substrate limited, even when some fish lines presented higher levels of 
fatty biosynthesis molecular capacity (Kamalam et al., 2012).

Functional but atypically regulated glucose metabolism
Rainbow trout is well known to be a poor user of dietary carbohydrates, limiting the 
incorporation of starch (main component of rich-carbohydrate plants) in aquafeeds 
(Polakof et al., 2012). Recent studies prove that rainbow trout has the inducible ca-
pacities to catabolize dietary glucose as suggested by levels of transcripts for glucose 
transporter in muscle (Diaz et al., 2009), for glucokinase enzyme in liver (Panserat 
et al., 2014) and for miRNAs involved in regulation of insulin signaling and metabo-
lism (Mennigen et al., 2014, 2012) following carbohydrate intake. By contrast, the 
molecular regulation of hepatic glucose production seems to be atypical (see further 
sections) and could be one of the reasons for the poor metabolic use of carbohydrate 
in trout.
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Linking nutrition to metabolism: hormonal and nutrient sensor roles
The decrease of feed intake associated with a low level of plasmatic insulin/glucagon 
ratio (mainly due to the pursuit of glucagon secretion) are often observed in rainbow 
trout following the intake of new aquafeeds, having potential strong impacts on feed 
efficiency (Panserat and Medale, 2013). Recent studies about the nutritional regula-
tion of nutrient sensing pathway in hypothalamus (center of the feed intake regula-
tion) and in endocrine pancreas (center of insulin and glucagon secretion linked to 
the nutritional status) demonstrated the existence of glucose and lipid sensing mecha-
nisms in these tissues (Caruso and Sheridan, 2011). Fine nutritional regulations of 
these pathways at a molecular level are in progress in rainbow trout fed alternative 
diets.

The 21st century or the “omics” boom in nutritional studies
In the 2000s, the omics approaches have been introduced for the nutritional stud-
ies in rainbow trout. In particular, the hepatic transcriptome analysis became a new 
tool to study nutrition in rainbow trout. Indeed, because the liver is the center of the 
intermediary metabolism, postprandial hepatic transcriptomics were analyzed after 
fish oil suppression (Kolditz et al., 2008; Panserat et al., 2008), fish oil replacement 
by vegetable oils (Panserat et  al.,  2008), total fish oil and fish meal replacement 
(Overturf et al., 2012) and micronutrient deficiencies (Olsvik et al., 2013). These 
data confirmed studies linked to the intermediary metabolism but opened also new 
hypothesis related to health (immunology), xenobiotic metabolism, proteolysis and 
cell division. Some of the transcriptomics studies were completed by proteomics 
analysis (Kolditz et al., 2008; Martin et al., 2003), which seemed to confirm the tran-
script analysis but were limited by the current technical inability to identify proteins 
in rainbow trout.

Nutritional regulation of hepatic glucose-6-phosphatase genes expression 
in rainbow trout: how the trout genome sequencing provides new answers 
to old questions

The rainbow trout is considered to be a glucose-intolerant species due mainly to 
persistent hyperglycemia after intake of carbohydrate-enriched meal(s) or glucose 
tolerance tests (Polakof et  al.,  2012). One hypothesis to explain such a phenotype 
is an insufficient inhibition of endogenous glucose production via gluconeogenesis 
pathway (Panserat et al., 2000). Hepatic glucose-6-phosphatase (G6pc), the last gluco-
neogenic enzyme catalyzing the hydrolysis of glucose-6-phosphate (G6P) in glucose, 
was proposed to be a major actor involved in blood glucose enrichment under hyper-
glycemic conditions [Type 2 diabetes (Rooney et  al.,  1993)] or after carbohydrate 
intake [in seabass (Viegas et  al.,  2015)] by establishing a futile glucose/G6P cycle 
together with glucokinase, the first glycolytic enzyme catalyzing the phosphoryla-
tion of glucose in G6P. A gene coding for G6pc in rainbow trout was for the first 
time partially sequenced in 2000 (Panserat et al., 2000) and the nutritional/hormonal 
regulation of its expression was then deeply investigated first by northern blot analy-
sis (Panserat et  al.,  2002,  2000) progressively replaced by contemporary real-time 
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quantitative PCR analysis. g6pc mRNA level was thus shown to be up-regulated by 
high dietary lipids but was surprisingly not regulated by high carbohydrate diet intake 
containing digestible starch (Panserat et al., 2008). In vivo and in vitro analysis also 
demonstrated that g6pc mRNA level was positively correlated to protein (Kirchner 
et al., 2003a) and amino acids (AA) pool (Lansard et al., 2010) levels respectively. 
Moreover specific AA were involved in the regulation of g6pc gene such as alanine 
(Kirchner et al., 2003b), one gluconeogenic dispensable AA (G-DAA), or leucine and 
methionine (Lansard et al., 2011). Finally insulin regulation of this gene was investi-
gated and demonstrated to have a down-regulation effect on g6pc mRNA level both 
in vivo (Polakof et al., 2009) and in vitro (Plagnes-Juan et al., 2008) and to be able to 
counteract the increase of mRNA level induced by glucose addition in the cell cultured 
medium or in trout fed a high carbohydrate diet. However, some of these expression 
results remained questioning when putting into perspective of enzyme activity results. 
For instance insulin seemed to act at the molecular level to down-regulate g6pc mRNA 
level but had no effect on G6pc hepatic and gut activity (Polakof et  al.,  2011). In 
the same way, g6pc mRNA level was down-regulated by only one G-DAA (alanine), 
whereas the enzyme activity was decreased in trout fed a three G-DAA substituted 
diets (alanine or aspartic acid or glutamic acid, (Kirchner et al., 2003b)). In addition, 
no clear reason could be given to explain why G6pc activity did not change when g6pc 
was repressed by a single meal with glucose (Panserat et al., 2000) until the identi-
fication of a second gene coding for G6pc in EST databases in 2008 (Plagnes-Juan 
et al., 2008). Indeed the analysis of this new gene brought new information to interpret 
data presented above and let sense that the complexity of rainbow trout genome has 
to be considered to better understand nutritional regulation. In particular, data showed 
that both g6pc genes were differentially regulated by nutritional status (Mennigen 
et al., 2013) but also displayed a contrasting regulation regarding the relative propor-
tion of carbohydrate in the diet (Kamalam et al., 2012; Seiliez et al., 2011). With the 
recent sequencing of the rainbow trout genome (Berthelot et al., 2014) molecular com-
prehension of g6pc/G6pc nutritional regulation moved on to a next step. Actually in 
silico investigations revealed that in fact five paralogous genes coding for G6pc were 
retained in the rainbow trout genome after Ss4R and that two of them, never identified 
before, displayed an unexpected up-regulation of their mRNA levels in trout fed a high 
carbohydrate diet (Marandel et al., 2015). Overall enzyme activity measured in the 
liver of these fish suggested that proteins translated from the latter two genes might be 
involved in this activity. It was hypothesized that these two genes may contribute to 
the hyperglycemic phenotype by releasing glucose in blood via the establishment of a 
futile cycle together with glucokinase. Old results concerning g6pc genes regulation 
by insulin or G-DAA can be now reinterpreted in the light of this new discovery and 
by considering that g6pc paralogs are potentially differentially regulated but that they 
all may contribute to overall enzyme activity.

The example of g6pc genes strongly illustrates how advances in genomics can serve 
our understanding of nutritional regulation of metabolism and provide new answers 
to old questions. But as usual, close a window often opens a door and many questions 
related to the role of differential regulation of g6pc paralogous genes and about their 
related contribution to one or another phenotype arise.
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Trout genomics for health

The rainbow trout immunome: the added value of a full repertoire 
of fish immunity genes

Toward the definition of a trout immunome
When the human genome was sequenced, a quasicomplete repertoire of proteins in-
volved in immunity—the “Immunome”—became available (Ortutay and Vihinen, 
2009). Lots of data were already available at the molecular, structural, and cellular 
levels, in both normal and diseased states regarding genes involved in mouse and hu-
man immunity; these data were integrated in databases and tools dedicated to immune 
genes and pathways. When the genome of another vertebrate is sequenced, its im-
munome can be annotated using three main approaches: (1) the functional knowledge 
available for immune genes of other species like human or mouse can be attached 
to their orthologs, considering that phylogenetic orthologs in different species often 
have similar roles, (2) datasets from high-throughput approaches of gene expression in 
infectious and other pathological states can identify genes modulated in diseases and 
during responses (3) at last, direct genomic and functional studies of genes or gene 
families can be undertaken from the newly available genome.

The annotation of the rainbow trout immunome is not an easy task and cannot be 
achieved by a direct transposition of the knowledge available in mouse and human 
databases; indeed, as mentioned above, two cycles of WGD occurred during the 
evolution of salmonids, providing a very large number of paralogous genes susceptible 
to sub functionalization. Additionally, several gene families such as chemokines and 
trims underwent considerable specific expansion in salmonids (Boudinot et al., 2011; 
Chen et al., 2013; Marancik et al., 2014). Hence, a well-assembled genome in which 
closely related duplicates are predicted constitutes a pivotal resource to define the 
immunome, especially from high-throughput transcriptomes.

An advanced trout immunome will provide a good basis for further developments 
such as the analysis of genetic polymorphism and epigenetic approaches, which will 
be instrumental for marker based selection programs.

The case of antigen specific receptors, Igs and TCRs
As new sequencing technologies gave access to the quasi-complete diversity of im-
munoglobulin (Ig) or T cell receptor (TCR) sequences expressed in a tissue—or even 
in a whole individual—studies of immune repertoires have greatly expanded in the last 
five years (Castro et al., 2013; Weinstein et al., 2009). These studies provide a detailed 
account of the adaptive immune responses against pathogens, and assess the status of 
the immune system in different pathologies. Such approaches have been developed in 
rainbow trout and zebrafish based on Ig and TCR sequences available in these species. 
The availability of a full trout genome sequence, and the potential possibility to obtain 
a detailed annotation of TCR and Ig loci in this species, will provide researchers with 
a much-empowered system to access the complete diversity of immune repertoires 
and responses. Additionally, the modelization approaches that apply to repertoire data 
using theoretical physics tools (Mora et al., 2010) can be developed only when the 
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sequences of all V, D, and J gene segments to recombine are available. The rainbow 
trout genome represents the first step—and a necessary resource—for the develop-
ment of such approaches that will be instrumental for evaluation of future vaccines.

Interest of a genome assembly for linkage studies: gene clusters 
and linkage studies

The presence and functional importance of gene clusters involved in immunity remain 
open questions. Several selection pressures may account for such clusters, including 
local dynamics of gene duplication and coregulation of expression. The trout genome 
provides an interesting opportunity to address such issues, one of which refers to the 
history of the major histocompatibility complex (MHC). TCRs recognize antigens as 
small peptides (9–22 amino acids) bound to membrane proteins called MHC class I or 
class II molecules, that are expressed at the surface of “antigen presenting cells.” The 
TCR recognizes both the MHC protein and the peptide antigen presented by the MHC 
molecule, a phenomenon known as “MHC restriction.” The genetic “MHC” is a region 
of the genome defined by the presence of MHC class I and II molecules, and genes 
involved in the preparation and loading of the peptide antigen for MHC presentation. 
In fact, the MHC encodes many genes (more than 100 genes in human), approximately 
half of which are implicated in immunity (The_MHC_sequencing_consortium, 1999); 
thus the genes of this region bring an important contribution to the immunome and 
defense mechanisms. The origin and evolutionary pathway of the MHC remains incom-
pletely understood. MHC is found in all jaw vertebrates from sharks to mammals. As 
mentioned earlier, it is now generally accepted that according to Ohno’s theory (Ohno 
et al., 1968), two rounds of whole genome duplication occurred after the emergence of 
urochordates and before the radiation of jawed vertebrates, leading to four sets of paral-
ogous regions. Such tetrads were identified for several key genetic regions, including 
the HOX and MHC complexes. Two additional tetrads were identified across vertebrate 
genomes, that apparently derived from neighboring regions on the same ancestral chro-
mosome containing the “proto-MHC” of common ancestors of vertebrates and other 
phyla (Flajnik et al., 2012); such proto-MHC regions were, for example, identified in 
the placozoan Trichoplax adhaerens, which is considered as a basal bilaterian branch 
(Suurvali et al., 2014). Altogether, these three MHC related tetrads encode a large num-
ber of genes involved in immunity in vertebrates, including several major gene com-
plexes such as the natural killer receptor complex and the leukocyte receptor complex; 
they also count many important immune gene families as B7 receptors, TRIMs, etc.

The MHC was conserved as a defined genomic entity across vertebrates from sharks 
to mammals, with the exception of fishes in which the regions encoding MHC class I 
and MHC class II are found on different chromosomes (Flajnik and Kasahara, 2010). 
The functional significance of this conservation, and of the different pattern observed 
in fish, remains elusive. Coregulation of many genes involved in immunity is a tempt-
ing hypothesis, but it has received little direct support to date and is challenged by the 
pattern observed in fish. Fishes represent interesting models to address such questions 
and get insights into the immunological impact of a “broken” MHC. Fish groups that 
have lost MHC class II genes and classical T helper responses—such as cods and 
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pipefishes (Star and Jentoft,  2012)—are good examples of potential repercussions; 
Salmonids, with additional cycles of genome duplication and ongoing rediploidiza-
tion, represent another context of great interest to challenge and understand the fate of 
the MHC region and its paralogs or related regions.

The rainbow trout genome constitutes a great resource for fish and comparative 
immunologists. As a basis to define a complete immunome, it is a very important 
resource for future developments requiring monitoring of immune responses, includ-
ing selection of more robust animals. Additionally, with the genome of the closely 
related Atlantic salmon, it also represents a unique opportunity to address generic and 
evolutionary questions for which teleosts harbor unique features. Finally, a good qual-
ity genome assembly will also be very important for future studies of the trout gut (or 
other) microbiota.

Rainbow trout reproduction with a genome sequence

A search in the Web of Science database (Science Citation Expanded 1975–present) 
yielded over 8,000 articles dealing with various aspects of rainbow trout reproduc-
tion. In contrast, a similar search for zebrafish—a widely used biological model—
reproduction only yielded 3,500 references. This illustrates the importance of the 
scientific community working in the field of reproduction in rainbow trout and the 
potential impact of the rainbow trout genome and related genomic resources to study 
reproduction in this species. As for other disciplinary fields, the recent release of the 
rainbow trout genome now offers new possibilities to study gene synteny and to elu-
cidate previously unresolved evolutionary history of genes playing important roles in 
reproduction as illustrated hereafter.

Sex hormone-binding globulins (Shbg) are carrier blood proteins involved in the 
transport of sex steroids in plasma and the regulation of their availability to target 
organs. Two genes—shbga and shbgb—exist in fish, shbga being the orthologs of 
the SHBG human gene. Shbgb has been found in rainbow trout and salmon but never 
described in any nonsalmonid teleost species to date. While this could suggest that 
shbga and shbgb originate from Ss4R WGD, the topology of the Shbg tree (Bobe 
et al., 2010) as well as recent analyses using the rainbow trout genome sequence sug-
gest that this duplication is much more ancient than initially thought.

Gonadal soma-derived growth factor (Gsdf) is a recently identified member of the 
TGF-beta superfamily (Sawatari et  al.,  2007) that is believed to play an important 
role for proliferation of primordial germ cells and spermatogonia. It is also spatial-
ly and temporally correlated with early testicular differentiation in medaka (Shibata 
et al., 2010). Within medaka gonads, gsdf gene expression is restricted to Sertoli and 
granulosa cells. The fate of gsdf after Ss4R WGD remains however uncharacterized 
but recent preliminary analyses suggest that Ss4R yielded two gsdf genes in rainbow 
trout with possible different expression patterns (Fig. 2.3). The rainbow trout genome 
will allow thorough characterization of gsdf ohnologs including any gene silencing or 
sub-/neo-functionalization after duplication.

With the genome sequence of rainbow trout, the use of genome editing will also 
become possible without relying on existing resources (e.g., BAC libraries) to target 
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important genes and describe the phenotypes associated with corresponding knock-
outs. While rainbow trout has a relatively long lifecycle, in comparison to other fish 
model species (e.g., zebrafish, medaka), gene knockout is sometimes necessary to 
decipher the function of salmonid specific genes such as the sex determining gene sdY 
(Yano et al., 2012). Because of its long-term use as a model for reproduction, rainbow 
trout could be an interesting model to perform genome editing in a well-characterized 
teleost model exhibiting group-synchronous oogenetic development. A recent study 
showed that the promising and now widely used Crispr/CAS9 technology can success-
fully be used in salmonids (Edvardsen et al., 2014).

In summary, the recent publication of the rainbow trout genome offers new possi-
bilities in the field of reproductive biology with major outcomes related to the control 
of sex-ratio, puberty, fecundity, and sterility.

Future directions and concluding remarks: resources 
are still expending

Next generation sequencing (NGS) is still a rapidly evolving field, and second-genera-
tion of NGS technologies are now available with the emergence of longer-read length 
technologies and higher volumes of produced sequence information. Using NGS in 
rainbow trout, transcriptome resources have been extended by numerous studies that 
have sequenced cDNAs in different tissues, stages of development, or conditions of 
treatments (Ali et al., 2014; Liu et al., 2014; Marancik et al., 2014; Salem et al., 2015). 
In addition to cDNA transcripts, deep microRNA sequencing has also been carried 

Figure 2.3  Example of evolution of gene expression after Ss4R gene duplication. 
Expression levels of gsdf Ss4R ohnologs in different rainbow trout tissues, showing that one of 
the two gsdf ohnolog is predominantly expressed even if the expression profiles of these two 
genes are still identical. mRNA levels (mean, SD) were measured in tissues originating from 
three individuals. Expression was arbitrarily set to 100 for gsdfb expression in testis.



36	 Genomics in Aquaculture

out in rainbow trout (Farlora et  al.,  2015; Juanchich et  al.,  2013; Ma et  al.,  2015; 
Salem et al., 2010) leading to detailed catalogs of microRNA repertoires. With new 
NGS technologies resequencing of the whole genome of new rainbow trout individu-
als from differing genetic origins, including doubled haploids individuals, will also 
be possible at limited cost. Therefore, new markers and new polymorphisms will be 
discovered, that will facilitate further QTL detection and refine functional analyses.

A new updated version of the rainbow trout genome has been announced to be 
released in 2016 based on recent NGS improvements of the Illumina sequencing tech-
nique allowing the production of 2 × 250 bp reads in large amounts (USDA initiative, 
Unpublished). The total size of the resulting assembly of this updated version of the 
rainbow trout genome is announced to be 2,17 Gb with a scaffold N50 of 1,700 kb. 
All these quickly growing resources will now have to be integrated to produce refer-
ence comprehensive maps of all functional elements in the rainbow trout genomes 
for instance through international initiative like the Functional Annotation of Animal 
Genomes (Andersson et al., 2015), which is the equivalent of the ENCODE Human 
genome. Altogether these joined efforts will lead to a better understanding of the rain-
bow trout genome allowing the use of these integrated resources for whole genome 
genetic selection, investigation of epigenetic regulations on a genome-scale (Baerwald 
et al., 2015) and all kinds of whole genome analysis.
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