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Abstract

Background: Enhancers play an important role in morphological evolution and speciation by controlling the
spatiotemporal expression of genes. Previous efforts to understand the evolution of enhancers in primates have
typically studied many enhancers at low resolution, or single enhancers at high resolution. Although comparative
genomic studies reveal large-scale turnover of enhancers, a specific understanding of the molecular steps by which
mammalian or primate enhancers evolve remains elusive.

Results: We identified candidate hominoid-specific liver enhancers from H3K27ac ChIP-seq data. After locating
orthologs in 11 primates spanning around 40 million years, we synthesized all orthologs as well as computational
reconstructions of 9 ancestral sequences for 348 active tiles of 233 putative enhancers. We concurrently tested all
sequences for regulatory activity with STARR-seq in HepG2 cells. We observe groups of enhancer tiles with
coherent trajectories, most of which can be potentially explained by a single gain or loss-of-activity event per tile.
We quantify the correlation between the number of mutations along a branch and the magnitude of change in
functional activity. Finally, we identify 84 mutations that correlate with functional changes; these are enriched for
cytosine deamination events within CpGs.

Conclusions: We characterized the evolutionary-functional trajectories of hundreds of liver enhancers throughout
the primate phylogeny. We observe subsets of regulatory sequences that appear to have gained or lost activity. We
use these data to quantify the relationship between sequence and functional divergence, and to identify CpG
deamination as a potentially important force in driving changes in enhancer activity during primate evolution.

Background
Despite seemingly large phenotypic differences between
species across the primate lineage, protein-coding se-
quences remain highly conserved. Britten and Davidson
as well as King and Wilson proposed that changes in
gene regulation account for a greater proportion of
phenotypic evolution in higher organisms than changes
in protein sequence [1, 2]. A few years later, Banerji and
Moreau observed that the SV40 DNA element could
increase expression of a gene independent of its relative
position or orientation to the transcriptional start site [3, 4].
This finding led to the characterization of a new class of
regulatory elements, enhancers.
Several aspects of enhancers make them ideal sub-

strates for evolution. Enhancers control the location and

level of gene expression in a modular fashion [5]. While
a coding mutation will disrupt function throughout an
organism, a mutation in an enhancer may only affect the
expression of a gene at a particular time and location.
This modularity of regulatory elements may facilitate the
development of novel phenotypes, e.g. by decreasing
pleiotropy [6]. Enhancers also commonly exist in groups
of redundant elements, referred to as shadow enhancers,
which provide phenotypic robustness [7–9]. Therefore,
mutations within enhancers generally exhibit lower
penetrance than mutations in coding sequences, facilitat-
ing the accumulation of variation.
Researchers have studied the role of enhancers in

evolution through two main methods: high-resolution,
systematic analysis of single enhancers, or low-resolution,
genome-wide analysis of many enhancers. Examples of the
former include fruitful investigations of how specific
enhancers underlie phenotypic changes, e.g. cis-regulatory
changes of the yellow locus affecting Drosophila
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pigmentation [10, 11], recurrent deletions of a Pitx1 en-
hancer resulting in the loss of pelvic armor in stickleback
[12], and recurrent SNPs in the intron of MCM6, resulting
in lactase persistence in humans [13, 14].
Low-resolution, genome-wide approaches for discover-

ing candidate enhancers via biochemical marks, when
applied to multiple species, have identified large-scale
turnover of enhancers between human and mouse em-
bryonic stem cells [15], human and mouse preadipocytes
and adipocytes [16], mammalian limb bud [17], and
vertebrate and mammalian liver [18, 19].
Low-resolution studies have the advantage of charac-

terizing thousands of enhancers at a time, but fail to pin-
point functional variation. In contrast, high-resolution
studies can provide clear insights into the evolution
of individual enhancers, but the findings may not be
broadly generalizable. Applying massively parallel re-
porter assays (MPRAs) to a closely related phylogeny
may offer an opportunity to bridge the insights of-
fered by low- and high-resolution studies. MPRAs
have enabled high-resolution functional dissection of
enhancers by testing the effects of naturally occurring
and synthetic variation on regulatory activity since their in-
ception [20–25], but have only recently been applied to
study enhancer evolution [26, 27]. For example, STARR-seq
was used to characterize enhancer evolution within
five Drosophila species, providing functional evidence
of large-scale turnover [26].
Here we set out to concurrently study the

evolutionary-functional trajectories of hundreds of
enhancers with MPRAs. We identified potential hominoid-
specific liver enhancers based on genome-wide ChIP-seq
and then functionally tested all of these in parallel. After
identifying “active tiles” of these candidate enhancers, we
tested eleven primate orthologs and nine predicted ances-
tral reconstructions of each active tile for their relative
activity. Normalizing to the activity of the reconstructed se-
quences of the common ancestor of hominoids and Old
World monkeys, we identify several subsets of active tiles
that appear to have gained or lost activity along specific
branches of the primate lineage; only some of these pat-
terns are consistent with ChIP-seq-based expectations. We
also use these data to examine how the accumulation of
mutations impacts enhancer activity across the phylogeny,
quantifying the correlation between sequence divergence
and functional divergence. Finally, we examine the set of
mutations that appear to drive functional changes, and find
enrichment for cytosine deamination within CpGs.

Results
Identification of candidate hominoid-specific enhancers
From a published ChIP-seq study in mammals [18, 28],
we identified 10,611 H3K27ac peaks (associated with
active promoters and enhancers) that were present in

humans and absent from macaque to tasmanian devil,
and that were not within 1 kilobase (kb) of a H3K4me3
peak (associated with active promoters). We considered
this set of peaks as potential hominoid-specific enhancers
(active within the clade from gibbon to human). We nar-
rowed this to a subset of 1015 candidate enhancers overlap-
ping ChromHMM strong-enhancer annotations in human
HepG2 cells [29] that also had orthologous sequences in
the genomes of species from human to marmoset. On
average, the intersection between the hominoid-specific
H3K27ac peak and HepG2 ChromHMM call was 1138 bp
(Additional file 1: Figure S1A). In order to identify active
subregions of each candidate enhancer, we designed
194 nt sequences tiling across the length of each, over-
lapping by 93-100 bp (Fig. 1a).
We synthesized and tested all 10,544 tiles for enhancer

activity in a massively parallel reporter assay. Specifically,
we used the STARR-seq vector [30], in which candidate
enhancers are cloned into the 3′ UTR of an episomal
reporter gene, in human HepG2 cells in triplicate. After
extracting, amplifying, and sequencing DNA and RNA
corresponding to the enhancer regions from transfected
cells, we calculated an enrichment score for each tile as the
log2 of the normalized ratio of RNA to DNA (rho for pairs
of replicates between 0.581 and 0.676) (Additional file 2:
Table S1, Additional file 1: Figure S2). We defined “active
tiles” as elements with log2 enrichment scores greater
than 1. While most of the 1015 candidate enhancers
contained no active tiles, we identified 697 active tiles (out
of 10,544, or 6.6%), occurring within 34% of the candidate
enhancers (Additional file 1: Figure S1B). While we chose
a strict cutoff for active tiles to increase specificity, we do
note a significant shift towards more positive enrichment
scores for all of our tiles as compared to scrambled con-
trol sequences (mean score 0.208 v − 0.07, p < 1e-5, t-test)
(Additional file 1: Figure S1C). We also note enrichments
for our active tiles overlapping DHS (1.8-fold), FosL2
ChIP-seq (2.1-fold), JunD ChIP-seq (2.2-fold), and p300
ChIP-seq peaks (1.5-fold) (Fisher’s exact tests, p < 1e-5).
While filtering on these marks might boost our ability to
predict enhancers, over half of our active tiles did not
overlap any of the above marks.

Computationally predicting the activity of ancestral and
orthologous sequences
A goal of this study was to characterize how the number
and spectrum of mutations relate to the functional diver-
gence of enhancer activity in primates. We used eleven
high-quality primate genomes (human, chimpanzee, gorilla,
orangutan, gibbon, rhesus, crab-eating macaque, baboon,
vervet, marmoset and squirrel monkey) to locate similarly-
sized orthologs of each of our 697 active human tiles. We
were able to identify orthologs in all eleven species for 348
of the 697 active human tiles. Since these species are
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separated by only ~ 40 million years, they retain high nu-
cleotide identity. We sought to take advantage of this to ask
whether we could computationally pinpoint the sequence
changes that underlie apparent functional differences be-
tween orthologous sequences within primates. Of note, we
had not yet measured the functional activity of orthologs of
active tiles. Rather, we were assuming that previously
observed patterns of gain/loss in H3K27 acetylation were
reflective of whether particular tiles were active or inactive
in each primate.
We first examined turnover of motifs of transcription

factors (TFs) known to be associated with enhancer activ-
ity in HepG2: FosL2 and JunD [31]. We focused on com-
paring the human ortholog to the marmoset ortholog, the
furthest outgroup with ChIP-seq data. We identified a
modest enrichment of the AP-1 consensus motif, the
motif for JunD and FosL2 binding, in the human ortholog
compared to marmoset (p = 0.012, Fisher’s exact). How-
ever, AP-1 site turnover could only explain 5% of the
gain-of-activity events predicted by H3K27ac ChIP-seq.
For a more global analysis, we scanned our human and
marmoset ortholog sequences for matches to the HOCO-
MOCO v9 motif database [32] using FIMO [33] and
identified an enrichment in the human orthologs for hep-
atocyte nuclear factors (2.1-fold, Fisher’s exact p = 0.0013)
and FoxA transcription factors (3.9-fold, Fisher’s exact
p = 1e-4) (Additional file 2: Table S2).
As a different approach, we built a computational

model for predicting enhancer activity in HepG2 cells,
and then sought to apply that model to the active tiles and

their orthologs. Specifically, we trained a gapped k-mer
support vector machine (gkm-SVM), a sequence-based
classifier based on the abundance of gapped k-mers in
positive and control training data, on an independent
massively parallel reporter assay experiment in HepG2
cells [31, 34]. We evaluated the model by predicting the
enrichment scores from our tiling experiment on human
orthologs, which the model had not seen during training.
Although the original data was based on an entirely differ-
ent MPRA assay (‘lentiMPRA’) and sequences, the scores
for each tile predicted from the gkm-SVM model corre-
lated reasonably well with our enrichment scores obtained
through STARR-seq in HepG2 cells (Spearman rho =
0.453, p < 1e-10) (Fig. 2a, Additional file 2: Table S3). This
model outperformed an LS-GKM model trained on a lar-
ger dataset of ChIP-seq data from HepG2 [31]. We then
used the MPRA-trained model to predict regulatory activ-
ity for the rhesus, vervet, and marmoset orthologs, all of
which did not have H3K27ac peaks. We expected to find
lower predicted activity for these three orthologs com-
pared to human. However, the predicted activity for the
human vs. rhesus, vervet, or marmoset orthologs
were not significantly different (p = 0.10, t-test), al-
though it did trend in the right direction for all
three comparisons (Fig. 2b).
With the goal of increasing our power to detect muta-

tions underlying gains or losses in enhancer activity, we
reconstructed nine ancestral sequences of the 11 primate
orthologs using FastML, a maximum-likelihood heuristic
(Fig. 1b) [35]. All ancestral reconstructions except for
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Fig. 1 Schematic of Experimental Design. a We identified potential hominoid-specific enhancers by intersecting hominoid-specific ChIP-seq predicted
enhancers from primary human liver with ChromHMM-predicted strong enhancers in HepG2 cells (screenshot from http://genome.ucsc.edu) [54]. We
then tiled across each candidate enhancer using 194 nt sequences and identified 697 tiles that were active in the STARR-seq reporter assay in HepG2
cells. b We located orthologous sequences in 11 primates and computationally reconstructed 9 ancestral sequences for 348 of the active tiles, using
New World monkeys as an outgroup. c We then cloned all 20 present-day or ancestral orthologs per tile and performed STARR-seq again in HepG2
cells. After collecting DNA and RNA from cells, we calculated enrichment scores as the log2 ratio of RNA to DNA for each ortholog. Each shade of red
represents a different ortholog tested
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N10 (most recent common ancestor (MRCA) to New
World monkeys) and N2 (MRCA to Catarrhines) had a
marginal probability > 0.8 (Additional file 1: Figure S5).
We then applied the gkm-SVM model to predict regula-
tory activities for the 20 orthologs (11 from present-day
primate genomes, 9 reconstructed ancestral sequences)
of the human-active tiles. To characterize evolutionary
trajectories, we performed hierarchical clustering on the
vectors of predicted activity for each tile, and identified a
group of 108 enhancer tiles that show decreased pre-
dicted activity in rhesus, vervet, and marmoset com-
pared to human, following the pattern predicted by
H3K27ac ChIP-seq (Fig. 2c). However, this was a clear
minority of all tiles evaluated with this computational
model (108/348, or 31%). We obtained similar results
when using the deltaSVM package with a model trained
on HepG2 DNase + H3K4me1 [36].

Functional characterization of ancestral and orthologous
sequences
We were surprised that less than a third of our compu-
tational predictions were concordant with ChIP-seq pre-
dictions. This could be due to limitations either in
interpreting patterns in H3K27ac gain/loss, the compu-
tational models that we are applying to predict the rela-
tive activities of orthologs, or both. To investigate this

further, we synthesized and functionally tested all 20 ver-
sions of each of the 348 active tiles with the STARR-seq
vector in HepG2 cells. With the goal of improving
accuracy and reproducibility, we added degenerate bar-
codes adjacent to each sequence of interest while cloning
the library, so that we could distinguish multiple independ-
ent measurements for each element. Furthermore, we per-
formed three biological replicates, which correlated well
(independent transfections; Spearman rho between 0.773
and 0.959) (Additional file 1: Figure S3A-C). We took
the average enrichment score of all barcodes over all
three replicates and filtered out any element with less
than six independent measurements. On average, this
set had 31 independent measurements per element
(Additional file 1: Figure S3D).
The resulting dataset included enrichment scores for

5426 of the 6960 sequences tested (78.0%), correspond-
ing to 344 of the 348 human-active enhancer tiles
(98.9%) (Additional file 2: Table S4). As expected, the
average pairwise correlation between species was higher
within clades (hominoid, Old World monkeys, and New
World monkeys) than between clades (Fig. 3a). We do
note a lack of correlation between human tiles from our
tiling screen and ortholog screen (rho = 0.05, p = 0.5).
While not ideal, this observation is not unprecedented
[31]. We selected the top 6% of tiles from the first
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independent reporter assay experiment conducted in HepG2 cells. We then predicted the functional activity of all of our human sequence tiles
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marmoset, vervet, or rhesus ortholog for all active human tiles. c Predicted scores for all orthologs of the 348 human-active enhancer tiles,
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monkeys). Cyan bar below dendrogram denotes a group of 108 enhancer tiles that follows expectations for hominoid-specific enhancers as
predicted by ChIP-seq comparative genomics
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experiment, with similar functional scores, and then
re-tested and re-normalized them against the ortholog
library with a much greater dynamic range. Both the
high reproducibility in our ortholog screen (rho = 0.773–
0.959) and the finding that our data from the ortholog
screen are highly structured (i.e. similar orthologs show
similar activity) support our confidence that our scores
are biologically meaningful.
For our initial analyses, we normalized the enrich-

ment scores for all non-human orthologs to the en-
richment score of the human ortholog, given that
these tiles were first identified on the basis of the hu-
man ortholog exhibiting activity (Additional file 2:
Table S5). We identified 220 enhancer tiles for which
we successfully assayed activity for the human ortho-
log and at least 14 other orthologs. For each of these
orthologs, we asked how well the experimental mea-
surements correlated with the gkm-SVM predictions
from Fig. 2c. Specifically, we asked whether the
gkm-SVM model predicted functional differences be-
tween closely related orthologs by comparing our
scores of model predictions vs. functional data (all
scores normalized to the human ortholog). There was

no correlation between the predicted vs. experimental
normalized scores using the MPRA-trained model (Fig. 3b;
Spearman rho = − 0.002, p-value = 0.892) (Additional
file 2: Table S6) or a model trained on HepG2 DNase +
H3K4me1 (Spearman rho = − 0.013, p-value = 0.633).
Therefore, while the kmer-based model performed well
at characterizing relative activities of diverse elements
(Fig. 2a), it did not predict the relative activities of
closely related sequences as measured here (Fig. 3b).
We next performed hierarchical clustering on the

vectors of experimentally measured activity for each tile
(i.e. where each vector consists of the set of activities
experimentally measured for orthologs and ancestral re-
constructions of a human-active tile, normalized against
the activity of the human ortholog; Fig. 3c). We identi-
fied a group of 78 enhancer tiles with relatively higher
activity in either humans or hominoids (78/220 or
35.5%) (Fig. 3c, green group), a group of 35 enhancer
tiles with relatively lower activity in the Old World mon-
key lineage (15.9%) (Fig. 3c, orange group), and a group
of 52 enhancer tiles with relatively higher activity in the
Old World monkey lineage (23.6%) (Fig. 3c, gray group).
As a negative control, when we permuted species’ ids for
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each tile (i.e. shuffling raw scores represented within each
column of Fig. 3c, renormalizing, and performing hierarch-
ical clustering), we no longer observe coherent clustering of
activity patterns by clades (Additional file 1: Figure S4).
The first group, i.e. the subset of 78 enhancer tiles

(35.5% of 220 tested) with greater activity in humans or
hominoids relative to other primates, corresponds to the
pattern predicted by the ChIP-seq data, slightly higher
than the proportion of the 108 tiles (31% of 348 tested)
whose computationally predicted activity was concord-
ant with the pattern predicted by the ChIP-seq data
(Fig. 2c). However, only 26 enhancer tiles overlapped be-
tween these groups, which is not more than expected by
chance (p = 0.69, Fisher’s exact test). This was consistent
with the lack of correlation between the experimental
and predicted relative scores shown in Fig. 3b.
For several reasons, we chose to move forward with

the experimentally measured activities of primate enhan-
cer tile orthologs. First, we believe that experimental
measurements are preferable to computational predictions
when available. A condition for this preference is that the
experimental measurements are reproducible, which in
this case they are (Additional file 1: Figure S3A-C).
Second, the computational model used here is predicting
the likelihood of a sequence belonging to an active vs.
inactive group, while the experimental data measure the
relative activity of each sequence. Although improving
computational tools remains a paramount goal, experi-
mental data are presently better for quantifying differences
in activity, which is the attribute that we would like to
correlate with sequence divergence. Third, the differences
in experimentally measured activity between orthologs
relative to human were generally much greater in
magnitude than the computational predictions (e.g.
compare Fig. 2c vs. Fig. 3c, which use the same color
scale), and furthermore in patterns that were consist-
ent with the phylogeny relating those sequences to
one another (Fig. 3c vs. Additional file 1: Figure S4,
which is the same data permuted).

Evolutionary-functional trajectories for hundreds of
enhancer tiles across the primate phylogeny
We had originally normalized enhancer tile activity to
the human ortholog with the assumption that most
enhancer tiles would be hominoid-specific based on pat-
terns in H3K27ac ChIP-seq data. While our largest
group did agree with the ChIP-seq data, it only repre-
sented 36% of the tested tiles. Given that the groups that
we did observe were relatively coherent in relation to
the lineage tree (Fig. 3c), we turned to asking whether
we could quantify the enhancer activity of various ortho-
logs relative to their common ancestor.
For this, we normalized the enhancer tile activity

scores for all orthologs to the MRCA of Catarrhines

(N2; common ancestor of hominoids and Old World
monkeys) (Additional file 2: Table S7). We then per-
formed hierarchical clustering on the 200 enhancer tiles
with scores for N2 and at least 14 additional orthologs.
The resulting heatmap is shown in Fig. 4a. We observed
several subsets of enhancer tiles that exhibited gains or
losses in activity as measured by STARR-seq, relative to
the experimentally measured activity of the reconstructed
sequence of the ancestor to Catarrhines (Additional file 2:
Table S8). Many of these subsets were coherent in relation
to the lineage tree, meaning that more closely related
orthologs exhibited consistent changes in activity in
relation to one another.
The first group (yellow; Fig. 4b) contains enhancer

tiles with increased activity restricted to the outgroup of
New World monkeys. This group contains 27 enhancer
tiles (13.5%), and is consistent with either a single
loss-of-activity event occurring between the MRCA to
Simiformes (hominoids, Old World monkeys, and New
World monkeys) and N2, or a single gain-of-activity
event on the branch leading to the New World monkeys.
As New World monkeys served as our outgroup, we
cannot distinguish between these possibilities.
A second group (gray, Fig. 4c) contains 22 enhancer

tiles (11%) with increased activity within the hominoid
clade. These enhancer tiles can be explained by single
gain-of-activity event along the branch from N2 to the
MRCA to hominoids. This group of tiles is particularly
interesting as a subset of recently evolving primate en-
hancers, with increased activity unique to hominoids.
A third group (green; Fig. 4d) contains enhancer tiles

with decreased activity restricted to the outgroup of
New World monkeys. This group contains 29 enhancer
tiles (14.5%), and is consistent with either a single
gain-of-activity event occurring between the MRCA to
Simiformes (hominoids, Old World monkeys, and New
World monkeys) and N2, or a single loss-of-activity event
on the branch leading to the New World monkeys.
A fourth group (orange; Fig. 4e) contains 22 enhancer

tiles (11%) with decreased activity in hominids (great apes
and humans) relative to N2. The most parsimonious ex-
planation is a single loss-of-activity event along the branch
from the MRCA of hominoids to the MRCA of hominids
(Fig. 4e). We do note some decreased activity in NWM,
gibbon, N3, and orangutan, but the largest change is local-
ized to hominids. Therefore, while we are highlighting the
event on the branch leading to hominids, there were likely
additional functional events throughout the tree. This
group is particularly interesting in that the human enhan-
cer tiles, which are active based on ChIP-seq and our
initial tiling experiment, have lower activity than some an-
cestral sequences as well as Old and New World monkeys.
Looking more broadly, there are 35 enhancer tiles (17%)
for which the human sequence exhibits significantly lower
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activity than the reconstructed N2 ortholog (p < 0.05,
t-test). This bias towards reductions in activity relative to
the ancestral N2 ortholog is not unique to human orthologs.
Across the full dataset, 626 orthologs (excluding New World
monkeys) showed a significant reduction in activity com-
pared to the N2 ortholog while only 543 showed a
significant increase (p= 0.0085, two-proportion z-test). This
result suggests that the ancestral forms of regulatory
sequences queried here tended to have greater activity
than descendant sequences.
A fifth group (Fig. 4f) contains enhancer tiles that

maintain activity in all orthologs except for Old World
monkeys, which have consistently decreased activity rela-
tive to N2. It also contains some enhancers with decreased
activity in NWM, which may be due to an additional
loss-of-activity event. This group contains 36 enhancer
tiles (18%). A parsimonious explanation is that this group
comprises tiles in which loss-of-activity events occurred
on the branch between N2 and the MRCA to Old World
monkeys. We also note some decreased activity through-
out the tree for this group, but the difference is most
pronounced for Old World monkeys.

We examined whether tiles derived from the same en-
hancer peaks tend to fall within the same groups defined
above. The 348 human-active enhancer tiles for which
we tested additional orthologs derived from 233 candi-
date enhancers. Of these 233, 75 contained multiple tiles
in our set, 9 of which had pairs of tiles that both fell
within one of the five groups, which is significantly
greater than expected by chance (p < 1e-5, permutation
test). Three of these nine pairs of enhancers were over-
lapping tiles, which can potentially narrow down the
location of causal mutation(s).

Characterizing molecular mechanisms for enhancer
modulation
We next explored the relationship between the sequence
vs. functional evolution in enhancer activity across the
primate phylogeny. As a starting point, we asked whether
there was a correlation between the accumulation of se-
quence variation and the magnitude of change in func-
tional activity for enhancer tiles. For every branch along
the tree, we calculated the number of mutations between
the mother and daughter nodes and the change in activity
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between the nodes. There was a significant, albeit modest,
correlation between the number of mutations accumu-
lated along a branch and the absolute change in functional
activity (Spearman rho = 0.215, p = 1.3e-27) (Fig. 5a,
Additional file 1: Figure S6). On average, each nucleotide
substitution was associated with a 5.4% change in func-
tional activity (slope of best fit line in Additional file 1:
Figure S6 normalized to average tile length).
We initially asked whether disruption of certain tran-

scription factor (TF) motifs was associated with changes
in functional activity. However, our study was under-
powered for this analysis, so we ultimately decided to
instead prioritize specific mutations based solely on se-
quence vs. functional differences across the phylogeny.
For each position along a given enhancer tile with a
variant in at least one ortholog, we characterized each
allele as ancestral (matching the MRCA of human and
squirrel monkey, N2) or derived. We then performed
Mann-Whitney U tests at each position to test for asso-
ciation between allele status and functional scores, while
applying a Bonferroni correction to account for the
number of variants tested for each tile. If there were
multiple mutations per tile, we only selected the muta-
tion or mutations (in case of ties) with the most signifi-
cant p-values. Through this analysis, we identified a total
of 84 mutations that correlated with the functional
scores, which we will refer to as “prioritized variants”
(Additional file 2: Table S9). Due to the phylogenetic
relationship between mutations, some tiles contained
multiple prioritized variants, whereas in other cases, we
are not calling any significant mutations on a given tile
(Additional file 1: Figure S7). We also generated a set of
“background variants,” which did not correlate with
functional scores (p > 0.05, Mann-Whitney U test).
Within the 84 prioritized variants, there was a significant

overabundance of C→T and G→A mutations over
background (p = 0.0021, Fisher’s exact test, Bonferroni
corrected) (Fig. 5b). In order to test whether this effect is
due in part to methylation, we looked at the subset of
these C→T and G→A mutations, which disrupted a
CpG. Cytosine deamination within a CpG accounted for
19% of our prioritized variants, compared to only 10.5% of
background variants (p = 0.015, Fisher’s exact test).

Discussion
While genome-wide studies demonstrate large-scale turn-
over of enhancers, the general molecular mechanisms
underlying this turnover remain largely unexplored. In this
study, we characterized modulation in the activity of hun-
dreds of enhancer tiles throughout primate evolution, with
nucleotide-level resolution. We first tried to characterize
functional changes using computational tools, and al-
though our tools were able to differentiate enhancers with
low nucleotide identity (Fig. 2a), they did not correlate well
with our ChIP-seq-based predictions (Fig. 2c) and per-
formed poorly at predicting functional changes between
evolutionarily similar sequences (Fig. 3b). There are several
reasons why computational models might have performed
poorly on our data, particularly for predicting changes in
expression. First, although progress has been made, accur-
ately predicting the effect of nucleotide mutations on gene
expression remains a very difficult challenge [36, 37].
Second, since our model was trained on a relatively small
sample size (500 positive and 500 negative MPRA se-
quences), a more limited training set compared to
previous attempts at predicting regulatory mutations
[36], it will not have seen all combinations of kmers
and therefore might miss epistasis between variants
and/or TF binding sites. We therefore decided to test
all sequences using STARR-seq, a reporter assay that

0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n 

of
 M

ut
at

io
ns

Mutational Signatures

Prioritized

Background

Sequence v. Functional Divergencea b

*

*

1       2      3       4      5       6      7       8      >8
# Nucleotide Changes

Ab
s(

Fu
nc

tio
na

l D
iv

er
ge

nc
e) 1.5

1.0

0.5

0.0

Fig. 5 Molecular Characterization of Enhancer Modulation. a For every branch along the tree, we calculated the nucleotide and functional
divergence. The number of nucleotide changes is on the x-axis and the absolute value of the difference in the logged functional activity
between the daughter and ancestral node is on the y-axis. b The fraction of indels, A→ C and T→ G mutations, A→ G and T→ C mutations,
A→ T and T→ A mutations, C→ A and G→ T mutations, C→ G and G→ C mutations, and C→ T and G→ A mutations in our set of 84
prioritized mutations (those associated with a significant functional difference) in black and 2537 background mutations (those associated with a
non-significant functional difference) in gray. Asterisk represents a p-value < 0.05 (Fisher’s exact test). First seven tests use a Bonferroni correction.
CpG deamination was calculated separately from the mutational spectra, and therefore not corrected for multiple testing

Klein et al. Genome Biology  (2018) 19:99 Page 8 of 13



experimentally measures regulatory activity for a library of
sequences.
By testing all elements in the same trans environment

(a single cell type), our experimental approach provided
quantitative and directly comparable measurements,
allowing us to measure functional differences between
closely related sequences. However, this experimental ap-
proach assumes conserved trans-environments through-
out the primate lineage. Previous studies have indeed
noted that both the specificity of transcription factors for
DNA and coactivators has remained highly conserved
over much longer evolutionary time scales [38–41].
From both our computational predictions and func-

tional scores, we note a low concordance with ChIP-seq
based predictions (30–36%). These numbers are similar
to previous attempts to replicate biochemical predictions
with high-throughput reporter assays [31, 42, 43], and
there are plausible explanations for the difference. The
first is the inherent contrast between reporter assays and
ChIP-seq. While ChIP-seq measures for the presence of
biochemical marks associated with enhancer activity,
reporter assays directly test sequences of interest for
functional activity. However, while ChIP-seq screens these
regions in their chromatinized and extended sequence
context, traditional reporter assays, as well as the one used
here, screen them as short sequences on a plasmid. Chro-
matin state differences between episomes and native
chromosomes may contribute to the differences.
The second explanation relates to the cell and tissue

types used. The ChIP-seq predictions were based on ex-
perimental data from primary liver samples from three
individuals per species. This may contribute to differ-
ences for multiple reasons. First, while most non-coding
mutations are not expression-modulating [23, 24], we
cannot rule out within-species sequence variation be-
tween the tissues tested and reference genomes contrib-
uting to functional differences. Second, although most of
the liver is composed of a single cell type, hepatocytes,
there is still more diversity in such primary tissue than
in the cell culture system we used for STARR-seq. More-
over, while we maintain a single trans environment in
testing all orthologs, HepG2 cells are derived from a he-
patocellular carcinoma, and likely have acquired changes
during cancer development and immortalization, relative
to primary liver. However, the fact that our enhancer tiles
are both active in HepG2 cells (ChromHMM and
STARR-seq) and in primary liver from humans (H3K27ac
ChIP-seq) adds to our confidence that we are characteriz-
ing bona-fide enhancers.
Through hierarchical clustering of enhancer tiles nor-

malized to human, we identified several functional
groups. The largest group matched our ChIP-seq based
predictions, with increased activity in humans and/or
hominoids compared to other primate orthologs. We

also identified a large group with decreased activity in Old
World monkeys (concordant with three of the four
ChIP-seq based predictions) and a third group with in-
creased activity in Old World monkeys, or decreased ac-
tivity in humans. The third group is the opposite of what
we expected based on our ChIP-seq predictions, and can
potentially be accounted for by the explanations above.
We next characterized evolutionary-functional trajec-

tories for 200 of the enhancer tiles by normalizing all
orthologs to the MRCA between hominoids and Old
World monkeys. We grouped these trajectories using
hierarchical clustering, and identified several common
patterns of modulation throughout the primate phyl-
ogeny. The most common patterns were tiles with a
single gain-of-activity in NWM (or loss-of-activity on
the branch leading to Catarrhines) (n = 27, Fig. 4b), a
single gain-of-activity in Hominoids (n = 22, Fig. 4c), a
single loss-of-activity in NWM (or gain-of-activity on
the branch leading to Catarrhines) (n = 29, Fig. 4d), a
single loss-of-activity in Hominids (n = 22, Fig. 4e), and a
single loss-of-activity in OWM (n = 36, Fig. 4f ).
The group of enhancer tiles with decreased activity in

hominids may indicate sub-optimization or fine-tuning
of enhancers [27]. In total, 17% of our tiles showed a sig-
nificant reduction of activity in human compared to N2,
suggesting that reductions, without complete loss, of ac-
tivity may in fact be a common phenomenon in primate
enhancers. To determine whether sub-optimization was
a general trend across the phylogeny, we calculated the
number of enhancer tiles with significant increases or
decreases in activity relative to N2. We identified signifi-
cantly more tiles with decreases relative to N2 than in-
creases. All of these findings are concordant with high
ancestral activity of present-day enhancers with subse-
quent loss to fine-tune activity along the phylogeny, at
least for the enhancers that we chose to characterize
here, which may be biased by the manner in which they
were selected.
Ultimately, we wanted to look for general trends be-

tween sequence and functional divergence of enhancers
throughout evolution. First, we looked at how the number
of mutations accumulated along any branch on the tree
correlates with the functional divergence along the branch.
We found a modest, but significant correlation between se-
quence and functional divergence (Spearman rho = 0.215,
p = 1.26e-27). Previous studies have associated naturally oc-
curring genetic variation to evolutionary changes in expres-
sion [26] and population variation in expression [23].
Previous studies have also related synthetic variation to
changes in reporter activity [20–22, 27, 44]. However, our
focus here is on quantifying the relationship between single
nucleotide changes between closely related species occur-
ring during neutral evolution and experimentally-measured
functional differences.
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To further characterize mechanisms of mutations
important in enhancer evolution, we utilized the high
nucleotide identity between orthologs and reconstructed
ancestral sequences to prioritize several variants, whose
allele status correlates with functional activity. We relied
on prioritizing variants solely based on sequence content
and functional scores, resulting in a list of 84 variants
which correlated with functional changes. These 84 vari-
ants were enriched for cytosine deamination, particularly
within CpGs, compared to variants that were not signifi-
cantly associated with functional scores. Of note, due to
the phylogenetic relationship between mutations within
each tile, we cannot say with certainty that prioritized
mutations are causal. Rather, we are highlighting variants
with the most significant p-value, analogous to the lead
SNP of a GWAS or eQTL study. Additional studies in
which each change is evaluated in the context of a com-
mon background may be necessary to identify which
mutation (or combination of mutations) causally modi-
fies enhancer activity. Especially within closely related
species, CpG deamination is a promising source of evo-
lutionary novelty. Since spontaneous deamination of
5-methylcytosine (5mC) yields thymine and G-T mis-
match repair is error prone, 5mC has a mutation rate
four to fifteen-fold above background [45].
Besides its increased rate of mutation, there are mul-

tiple mechanisms by which CpG deamination may play a
significant role in enhancer modulation. One mechanism
is by introducing novel transcription factor binding sites
or disrupting existing binding sites. In fact, Zemojtel et
al. suggested that CpG deamination creates TF binding
sites more efficiently than other types of mutational
events [46]. CpG deamination may also alter enhancer
activity by modifying methylation. Enhancer methylation
has been correlated with gene expression, most fre-
quently in cancer patients but also in healthy individuals
[47]. Notably, enhancer methylation is both correlated
with increased and decreased gene expression, possibly
explaining why we see an enrichment of CpG deamin-
ation in both gain and loss-of-activity events [48].

Conclusion
In this study, we aimed to characterize general mo-
lecular mechanisms that underlie enhancer evolution.
In order to do so, we conducted a large-scale screen of
enhancer modulation with nucleotide-level resolution
by combining genome-wide ChIP-seq with STARR-seq
of many orthologs. We characterized evolutionary-
functional trajectories for hundreds of enhancer tiles,
demonstrating a significant correlation between se-
quence and functional divergence along the phylogeny.
We identify that many present-day enhancers actually
have decreased activity relative to their ancestral se-
quences, supporting the notion of sub-optimization.

We prioritized 84 variants, which correlated with func-
tional scores, and found enrichment for cytosine deamin-
ation within CpGs among these prioritized events. We
propose that CpG deamination may have acted as an
important force driving enhancer modulation during
primate evolution.

Methods
Identification of potential hominoid-specific enhancers
We downloaded processed H3K27ac and H3K4me3 peak
calls from Villar et al. [18]. Within each species, we
called enhancers as H3K27ac peaks with a mean fold
change ≥10 that were not within 1000 bp of an
H3K4me3 replicated peak. While the H3K4me3 filter
may remove some active enhancers with modest
H3K4me3 peaks, it allows us to filter out alternative pro-
moters that may be unannotated in different species.
The analysis resulted in 29,139 enhancer calls vs. 29,700
if we include all peaks at least 1 kb away from an anno-
tated TSS (Ensembl v83). We converted all replicated
H3K27ac peaks in rhesus, vervet and marmoset to hg19
coordinates using the UCSC liftover tool with a mini-
mum match of 0.5. Villar et al. called the vervet peaks
using the rhesus genome as a reference. We identified
potential hominoid gain of function enhancers as pre-
dicted enhancers that did not have orthologous
H3K27ac enrichment within 1 kb from the summit in
rhesus, vervet or marmoset. We converted the 10,611
gain of function enhancers back to the marmoset and
rhesus genome with a minimum match of 0.9, with 6862
having orthologs in the three genomes. We intersected
our 6862 GOF enhancers with ChromHMM strong
enhancer calls in HepG2 using bedtools [49], resulting
in a final set of 1015 potential hominoid gain of function
enhancers predicted to be active in HepG2.

Design and synthesis of tiles
For each potential hominoid gain of function enhancer,
we defined end points by using the intersection of the
H3K27ac peak and HepG2 ChromHMM strong enhan-
cer call. For any intersections less than or equal to
200 nt, we designed a 194 bp tile around the center. For
intersections with 200 ≤ length ≤ 400, we split the se-
quence into 3 overlapping fragments. For intersections
> 400 nt, we used 100 bp sliding windows. We created
negative controls from 800 tiles using uShuffle to create
200 dinucleotide shuffles each [50], and then picked the
shuffled sequence with the fewest 7mers present in the
original tile. We then synthesized all 10,544 tiles and
800 negative sequences as part of a 244 K 230mer array
from Agilent. The library was amplified from the Agilent
array using the HSS_cloning-F (5’-TCTAGAGCA
TGCACCGG-3′) and HSS_cloning-R (5’-CCGGCCGAA
TTCGTCGA-3′) primers and cloned into the linearized
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human STARR-seq plasmid using NEBuilder HiFi DNA
Assembly Cloning Kit [30]. The library was transformed
into NEB C3020 cells and midi-prepped using the
ZymoPURE Plasmid Midiprep Kit (Zymo Research).

Identification of active tiles
We transfected 5μg of our tiling library and 2.5μg of a
puromycin expressing plasmid into three 60 mm dishes,
each with approximately 1.5 million HepG2 cells using Li-
pofectamine 3000 (ThermoFisher) according to manufac-
turer’s instructions. Twenty-four hours post-transfection,
we selected cells with 1 ng/mL puromycin for 24 h.
Forty-eight hours post transfection, we extracted DNA
and RNA from the cells using the Qiagen AllPrep DNA/
RNA Mini Kit (Qiagen). We treated RNA with the
TURBO DNA-free Kit (ThermoFisher) and performed
reverse transcription with SuperScript III Reverse Tran-
scriptase (ThermoFisher). We amplified the cDNA using
NEBNext High-Fidelity 2× PCR Master Mix with 5ul of
RT reaction with primers HSS-F and HSS-R-pu1 in a 50ul
reaction for three cycles with a 65 °C annealing
temperature. PCR reactions were cleaned with 1×
Agencourt AMPure XP and eluted in 19ul (Beckman
Coulter). We then performed a nested PCR using the
whole purified cDNA reaction with primers HSS-NFpu1
(5’-CTAAATGGCTGTGAGAGAGCTCAGGGGCCAGC
TGTTGGGGTGTCCAC-3′) and pu1R (5’-ACTTTATCA
ATCTCGCTCCAAACC-3′). DNA was amplified in one
reaction using HSS-NFpu1 and HSS-R-pu1 (5’-ACTT
TATCAATCTCGCTCCAAACCCTTATCATGTCTGCT
CGAAGC-3′) with 1-2μg of DNA in a 50ul reaction and
purified with 1.8× AMPure. We added barcodes and
Illumina adaptors using Kapa HIFI HotStart Readymix in
50uL reactions with 1ul of previous PCR product with
a 65 °C annealing temperature and primers Pu1F-idx
(5’-AATGATACGGCGACCACCGAGATCTACACACG
TAGGCCTAAATGGCTGTGAGAGAGCTCAG-3′) and
Pu1R-idx (5’-CAAGCAGAAGACGGCATACGAGATNN
NNNNNNNGACCGTCGGCACTTTATCAATCTCGCT
CCAAACC-3′) and sequenced on a 300 cycle NextSeq
500/550 Mid Output v2 kit with PE150bp reads. We
aligned sequencing reads to the input library using BWA
mem [51]. We then calculated the normalized RNA/DNA
ratio (#aligning RNA reads/All RNA reads divided by
#aligning DNA reads/All DNA reads) using a hard DNA
read cutoff of > 10 and ratio of zero (zero RNA reads)
were excluded from analysis. We defined active tiles as
ones with a log2 enrichment score > 1.

Design of orthologs and ancestral sequences
We identified all orthologs using the UCSC liftover tool
with a minimum match of 0.9. For each sequence, we
determined the longest ortholog, and set it to 194 bp
around the center. We then used LiftOver to identify the

end points in other species. 348 of the 697 sequences
were present through squirrel monkey, and we decided
to use squirrel monkey as our outgroup moving forward.
For ancestral reconstruction, we trimmed the hg38 phy-
loP 20way tree to the 11 species of interest and ran the
FastML heuristic [35]. We aligned each sequence with
ClustalO to obtain a multiple sequence alignment [52],
and then ran FastML (v3.1) with default settings on that
alignment and the phyloP tree to create ancestral
reconstructions.

Prediction of tiling and evolutionary results
We trained the gksvm-1.2 from Ghandi et al. using an
independent dataset (the 500 top- and bottom-scoring
lenti-MPRA sequences from Inoue et al. as the positive
and negative training sets, respectively), with default set-
tings (Ghandi et al., 2014; Inoue et al., 2016). We used
this model to predict scores for all tiles, and calculated
the Spearman rho with our functional data. We next
predicted scores for our positive human tiles and pre-
dicted negative orthologs from rhesus, vervet and
marmoset and performed a two-sample t-test for each
comparison. We calculated delta gkm-SVM scores by
subtracting the predicted score of each ortholog from
the predicted score of the human ortholog (in log scale).
We then predicted all eleven orthologs and nine ancestral
nodes for all 348 enhancers.

Functional testing of orthologs and ancestral sequences
All orthologs and ancestral sequences were synthe-
sized as part of an Agilent 230mer 244 K array. We
appended 5 bp degenerate barcodes to each sequence
by amplifying off the array with JK_R48_5N_HSSR
(5’-CCGGCCGAATTCGTCGANNNNNCCATTGAGC
ACGACAGC-3′) and HSS_cloning-F (5’-TCTAGAGC
ATGCACCGG-3′). We then cloned the library into
the STARR-seq vector in NEB C3020 cells, trans-
fected into HepG2 cells, and prepared sequencing li-
braries as described above. Since some orthologs have
very similar sequences, we aligned sequencing reads to
our reference and only extracted error-free matches. For
each barcode-tile pair, we calculated the #aligning RNA
reads/Total RNA reads divided by the #aligning DNA
reads/Total DNA reads. We then took the log2 of this
ratio for each barcode-tile pair, and averaged all pairs for
each tile. We used a hard cutoff of 10 DNA reads for any
barcode-tile pair, and ratio of zero (zero RNA reads) were
excluded from analysis before log transformation. Hier-
archical clustering was performed on the top ten principal
components (to handle missing values) with SciPy v0.19.1
with Python v2.7.3 using the distance metric set as cosine
(scipy.spatial.distance.pdist) and the linkage method set as
average (scipy.cluster.hierarchy.linkage).
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Molecular characterization
We first looked to see whether the turnover of any tran-
scription factor motifs correlated with functional scores.
We ran FIMO to identify TF motifs from HOCOMOCO
v9 that were lost or gained in at least one ortholog for
each enhancer [32, 33]. For one enhancer at a time, we
ran a linear regression for the presence or absence of
each TF motif against the functional scores of all ortho-
logs tested. For each TF, we then tested whether the
mean slope across all enhancers was equal to zero using
a two-sample t-test.
We next looked to see whether any sequence muta-

tions in an enhancer correlated with functional scores of
the orthologs. For each enhancer, we performed a mul-
tiple sequence alignment using ClustalO. For each site
along the enhancer (skipping the first to avoid alignment
artifacts), we characterized the allele as ancestral or
derived. For each site with a singleton derived allele in at
least one ortholog, we conducted a Mann-Whitney U
test to see whether the allele associated with the func-
tional scores. We then corrected the p-values for the
number of sites tested along the enhancer using a
Bonferroni correction. For enhancer tiles with multiple
prioritized mutations, we only included the mutations
with the most significant p-value (if there was a tie, we
included all with the same p-value). We then character-
ized the nucleotide change and summed the number of
events over all enhancers. We calculated the Fisher’s
exact p-value for each type of mutational event, using
Bonferroni’s correction to adjust for multiple hypothesis
testing. We then looked to see what fraction of C→T
and G→A mutations disrupted CpGs, and calculated
the Fisher’s exact p-value.
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