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A simple genetic basis of adaptation to a
novel thermal environment results in
complex metabolic rewiring in Drosophila
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Abstract

Background: Population genetic theory predicts that rapid adaptation is largely driven by complex traits encoded
by many loci of small effect. Because large-effect loci are quickly fixed in natural populations, they should not
contribute much to rapid adaptation.

Results: To investigate the genetic architecture of thermal adaptation — a highly complex trait — we performed
experimental evolution on a natural Drosophila simulans population. Transcriptome and respiration measurements
reveal extensive metabolic rewiring after only approximately 60 generations in a hot environment. Analysis of
genome-wide polymorphisms identifies two interacting selection targets, Sestrin and SNF4Aγ, pointing to AMPK, a
central metabolic switch, as a key factor for thermal adaptation.

Conclusions: Our results demonstrate that large-effect loci segregating at intermediate allele frequencies can allow
natural populations to rapidly respond to selection. Because SNF4Aγ also exhibits clinal variation in various
Drosophila species, we suggest that this large-effect polymorphism is maintained by temporal and spatial
temperature variation in natural environments.
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Background
One of the major challenges in evolutionary genetics is
to unravel the genetic architecture of phenotypic traits
and how this affects the potential of natural populations
to respond to selective forces. Theory predicts that evo-
lution proceeds mainly through polygenic quantitative
traits [1]. Thus, adaptation is expected to involve rather
subtle allele frequency changes at many small-effect loci
[2–4]. Classic association studies as well as recent whole
genome association studies confirmed that variation at
quantitative traits is due to a large number of loci and
that large-effect loci are rare [5–7]. Although, associ-
ation studies are helpful to describe the genetic architec-
ture of phenotypic traits, these genetic variants cannot
be directly linked to adaptive responses [8]. In contrast
to these theoretical predictions, an increasing number of
studies identified a small number of large-effect loci

which are driving rapid adaptation (reviewed in [9]).
Fluctuating selective pressure across time and space may
contribute to the persistence of polymorphism at
large-effect loci even over long evolutionary time scales
[9–11]. Importantly, these major-effect loci typically
encoded rather simple traits, such as melanism [12, 13],
insecticide resistance [14], or lactose tolerance in
humans [15]. One noticeable exception is the evolution
of song-less crickets, which occurred on two islands, but
involved different major-effect loci [16]. It remains un-
clear to what extent rapid adaptation by large-effect loci
is an exception of simple traits, which are maintained in
the population by fluctuating selection pressures.
In the light of global warming, it is of key interest to

understand how novel thermal environments can drive
genetic adaptation and the true nature of the associated
phenotypic changes [17, 18]. Temperature is a major
abiotic factor known to affect a broad range of pheno-
types and provides a good study system to investigate
the genetic architecture of phenotypic evolution, in par-
ticular of quantitative traits. Most insight into thermal
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adaptation comes from contrasting natural populations
that have evolved in different thermal habitats [19–24].
Apart from complications intrinsic to natural popula-
tions, such as confounding signals of demography [25]
and the complexity of natural environments, the under-
lying evolutionary time scales are too long to be inform-
ative about rapid adaptation required to counter the
current rate of climate change [8]. The well-documented
clinal variation and seasonal response of many genetic
polymorphisms [21–24] make Drosophila an excellent
model system to study the impact of large-effect alleles
segregating in natural populations on rapid adaptation to
novel thermal environments. Shared clinal polymorphisms
between two sister species, D. melanogaster and D. simu-
lans, suggest that genetic variants associated with thermal
clines may have been segregating for long evolutionary
times. Such alleles contributing to temperature adaptation
could be readily selected, either in natural populations or
in the laboratory, and mediate a fast adaptation to a new
temperature regime.
Here we use experimental evolution in D. simulans to

investigate the genetic architecture of phenotypic adap-
tation to a novel thermal environment. Transcriptomic
data suggest that the evolved populations underwent a
massive metabolic rewiring, which was confirmed by
resting metabolism measurements. Whole genomic rese-
quencing after ~ 60 generations of evolution under our

hot environment indicated that, despite temperature
adaptation being a complex trait, only a small number of
selection targets were identified across five replicate
populations. Two interacting loci were associated with
AMP-activated protein kinase (AMPK), a key metabolic
switch driving the phenotypic changes observed in our
experiment. We show that these alleles are segregating
at intermediate frequency in a European population and
show a latitudinal cline in North American populations.
These results suggest that experimental evolution identi-
fied variants which play a key role in rapid spatial and
temporal temperature adaptation in natural populations.

Results
Experimental evolution and phenotypic response
A natural D. simulans population from Póvoa de Varzim,
Portugal was selected for ~ 60 generations in a hot en-
vironment that fluctuated daily between 18 and 28 °C
(Fig. 1). Five independently hot-evolved populations
were compared to reconstituted ancestral populations
and five populations that evolved in a cold environment
fluctuating between 10 and 20 °C. The cold-evolved con-
trol populations allowed us to rule out adaptation to cul-
ture conditions not specific to the hot environment (i.e.,
laboratory adaptation). To characterize the adaptive re-
sponse of the evolved flies to high temperature, we
assayed three phenotypes — fecundity, the whole

Fig. 1 Experimental design: 250 isofemale lines from a natural Drosophila simulans population constituted the ancestral populations. The
populations were kept at a constant population size (1000 flies) with non-overlapping generations either in a hot environment (red) fluctuating
between 28 and 18 °C on a 12/12 h cycle or a cold environment (blue), fluctuating between 20 and 10 °C (five replicated populations in each
environment). We performed multiple phenotypic measurements on the evolved and reconstituted ancestral populations (green) in common
garden experiments. We profiled the transcriptome of hot- (F64) and cold- (F39) evolved and reconstituted ancestral populations. Resting
metabolism (CO2 emission) and fecundity were measured later in the experiment (cold-evolved F74–F77; hot-evolved F127–F133). We also
sequenced the entire genome of the ancestral and hot-evolved populations (F59)
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transcriptome, and resting metabolism — in a common
garden experiment at 23 °C, the mean temperature of
the experimental hot environment.
Consistent with an adaptive response, the hot-evolved

D. simulans populations were fitter than the ancestral
population in the hot environment. In common garden
experiments involving two different hot temperature re-
gimes, the hot-evolved populations were more fecund
(total number of eggs laid over successive 5 days) than
the ancestral population (p = 0.0006 and p < 0.0001 at
23 °C and 18/28 °C cycling, respectively, Fig. 2e, f ). Simi-
lar to previous observations in D. melanogaster [26],
hot- and cold-evolved populations were only signifi-
cantly different from each other at 23 °C (p = 0.0018,
Fig. 2e), but not in the fluctuating temperature regime.
These fitness differences suggest that the flies in our ex-
periment adapted to a higher mean temperature as well
as rapid temperature fluctuations [26].
We further characterized the molecular phenotype of

the hot-evolved and control flies using RNA sequencing
(RNA-seq), collecting whole transcriptome data of young
adult males (3–5 days old). Out of more than 9000 genes
with reliable gene expression signals, 687 genes were dif-
ferentially expressed (false discovery rate (FDR) < 0.05)
between hot-evolved and reconstituted ancestral popula-
tions. In contrast, the cold-evolved control populations

were very similar to the ancestral ones, with only 60
genes differing significantly. Because 35 of these genes
were also differentially expressed between ancestral and
hot-evolved populations, we attributed them to
non-temperature-specific adaptation. These genes are
enriched for oxidoreductase activity (eight cytochrome
p450 genes, see Additional file 1: Table S1), suggesting a
global down-regulation of detoxification genes.
Consistent with hot temperature adaptation affecting

multiple genes, we identified a significant enrichment
of several Gene Ontology (GO) categories and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
contrasting hot-evolved with ancestral or with
cold-evolved populations. Genes down-regulated in the
hot-evolved populations were enriched for more GO
categories than up-regulated ones (Additional file 2:
Table S2). Up-regulated genes were mainly enriched for
defense response (including the Toll signaling pathway).
Other categories overrepresented in up-regulated genes
were triglyceride metabolism and cellular lipid metabolic
processes, which include several genes involved in fatty
acid synthesis or elongation (see Additional file 1: Figure
S1). Down-regulated genes were enriched for a larger
number of functions and pathways, most of which are re-
lated to metabolism: both the tricarboxylic acid (TCA)
cycle and oxidative phosphorylation pathways were
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Fig. 2 Phenotypic response of hot-evolved flies. a Evolution of gene expression in the glycolysis pathway. Enzymes significantly up- (green) and
down- (red) regulated in the hot-evolved populations relative to the ancestral population are shown in color. b Gene expression changes (log2
fold change) in the hot-evolved populations relative to the ancestral (green) or cold-evolved (blue) populations. (** FDR < 0.05, * FDR < 0.1).
c Hot-evolved populations (red) differ in gene expression from the ancestral (green) and cold-evolved (blue) populations for genes of the oxidative
phosphorylation pathway and TCA cycle. d For both sexes, the resting metabolism of hot-evolved flies differs significantly from that of ancestral
and cold-evolved populations. Both ancestral and cold-evolved populations are significantly different from the hot-evolved populations when
considering both sexes in a single model (p = 0.032 and p = 0.003, respectively). Bars show mean ± 95% confidence intervals as estimated by our
linear model (see Methods). e, f Higher fitness of hot-evolved flies: hot-evolved flies have a higher fecundity than the ancestral (p = 0.0006) or
cold-evolved populations (p = 0.0018) at 23 °C but differ only from the ancestral populations at 28/18 °C (p < 0.0001), which is consistent with
previous results in D. melanogaster (see Additional file 1: Supplementary Methods and Results for a detailed discussion)
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significantly down-regulated. Some key enzymes of gly-
colysis were also down-regulated (see Fig. 2a, b) along
with the sucrose metabolism and carbon metabolism
pathways.

Resting metabolism measurements
With the transcriptomic data suggesting major regula-
tory changes affecting the metabolism, we reasoned that
high-level metabolic phenotypes, such as respiration,
should have changed as well. We quantified the resting
metabolism by measuring CO2 emission overnight from
the ancestral and both the cold- and hot-evolved popula-
tions. After 127 generations in the hot and 74 generations
in the cold environment, we measured the CO2 emission
of the evolved flies in parallel to a reconstituted ancestral
population. In a generalized linear model (GLM) we iden-
tified the factors “population” (F31,2 = 5.7, p = 0.008) and
“sex” (F30,1 = 13.7, p = 0.0008) to have a significant effect
on CO2 emission (see Fig. 2e, none of the interactions be-
tween the factors was significant; p > 0.13). “Body weight”
was not significant (F30,1 = 1, p = 0.3), because the dif-
ference in weight between sexes was already explained
by the factor “sex” and females produced significantly
more CO2 than males. We found similar results in a
second series of measurements between the ancestral
and hot-evolved populations after 133 generations
(see Additional file 1: Supplementary Methods and
Results).

Genomic signature of adaptation
While the transcriptomic response is well suited to
identify pathways that are altered in response to
temperature adaptation, it is inadequate for pinpointing
the causal mutation(s) driving these changes. To map
the targets of selection, we performed Pool-Seq [27]
contrasts of the ancestral populations and hot-evolved
flies at generation ~ 60 to identify genomic regions
harboring pronounced allele frequency changes across
all five replicates. Because the cold-evolved flies seem
to be very similar to the ancestral flies for phenotypes
that evolved in the hot environment, we only present
here the genomic results of the hot-evolved flies. Based
on the allele frequency changes of autosomal
single-nucleotide polymorphisms (SNPs), we estimated
an effective population size (Ne) of 219 individuals (see
Methods) in our populations. More than 2.7 million
SNPs were tested for concordant allele frequency
changes across replicates using the Cochran–Mantel–
Haenszel (CMH) test. The Manhattan plot of the CMH
–log10(p values) showed a handful of pronounced peak
structures (Fig. 3a). Each peak comprises a set of linked
SNPs that are highly differentiated between the
hot-evolved and ancestral populations, a pattern indi-
cating that the associated genomic regions likely carry

selected variants. Using simulations to estimate a false
positive rate, we retained the 100 most significant SNPs
(false positive rate < 0.04), all contained in the five high-
est peaks of the Manhattan plot (Fig. 3b). While three
peaks did not contain genes that can be directly linked to
the observed changes in gene expression or their regula-
tion (see Additional file 1: Supplementary Results), each of
the two remaining peaks contained an interesting candi-
date gene, Sestrin and SNF4Aγ. Both genes are involved in
metabolism homeostasis and interact with each other.
The majority of the most significant SNPs in the peak of
the 3R chromosome map to SNF4Aγ (although a large in-
tron also contains three additional genes, see Fig. 3). The
second peak of interest on the 3R chromosome arm was
broader and included several genes, all with the same stat-
istical support.
The highly pronounced peak structure in this experi-

ment is different from the results of most evolve and
resequence (E&R) studies in Drosophila (e.g., [28–34]).
We think that several factors are probably responsible
for this. First, the targets of selection start at rather high
frequencies, which allows for recombination before the
experimental evolution. Second, the use of D. simulans
brings the advantage of no segregating chromosomal in-
versions and a higher recombination rate, in particular
towards centromeres and telomeres [35–37]. Third, the
use of a rather large number of founder chromosomes
(about 1000) may also have contributed to a more pro-
nounced peak structure.

Characterization of the Sestrin and SNF4Aγ loci
While the mapping precision of the genomic region
containing Sestrin is not very high (see Additional file 1:
Supplementary Methods and Results), the selection sig-
nature for SNF4Aγ is narrow, encompassing less than
15 kb (Fig. 3b). We further refined the selection signa-
ture by looking for correlated allele frequency trajector-
ies across replicates (see Methods) and identified 28
SNPs that may reside on similar haplotypes in the ances-
tral population (Fig. 3b). These 28 candidate SNPs start
from a mean frequency of 44% in the ancestral popula-
tion and rise as high as 96% (replicate 3) in ~ 60 genera-
tions (mean increase 42%, Additional file 1: Figure S2).
We estimated an average selection coefficient of 0.07
across the 28 SNPs of interest in the SNF4Aγ locus
(Additional file 1: Figure S6). No significant selection
signature was detected in the SNF4Aγ region in the
cold-evolved populations (data not shown).
Around the Sestrin locus, we found a higher num-

ber of SNPs (95) distributed over a broader genomic
region (~ 60 kb) than for SNF4Aγ (See Additional
file 1: Figure S7). The region that responded to selec-
tion contained multiple genes, Sestrin being at the
left end of this region. Only the joint analysis of
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RNA-seq and genomic data allowed the identification
of the putative target of selection. The alleles of the
selected haplotypes start from a lower frequency than
in the SNF4Aγ region (mean ~ 20%, see Additional file 1:
Figure S8) and increase by ~ 40%. With an estimated se-
lection coefficient of 0.06 (Additional file 1: Figure S9), the
selection strength of Sestrin was similar to that of
SNF4Aγ. The broader genomic region around Sestrin can
be explained by the lower starting frequency of the se-
lected haplotypes encompassing Sestrin.
We validated our Pool-Seq-based inference of se-

lected haplotypes by sequencing 12 evolved haplotypes
from two different replicates. For both loci the candi-
date SNPs cluster nicely and distinguish selected from
non-selected chromosomes (Additional file 1: Figures
S10 to S14). When considering all SNPs of the peaks,
we identified pronounced differences between the two
regions. The Sestrin locus is characterized by a single
selected haplotype, with very few differences among
the selected chromosomes. The SNF4Aγ region,

however, carries multiple selected haplotypes that
show some evidence for recombination, as expected
for a high starting frequency. Interestingly, the
non-selected chromosomes all carry the same haplo-
type at the SNF4Aγ region.

Estimating the contribution of SNF4Aγ and Sestrin to
phenotypic change
The rapid frequency change of SNF4Aγ and Sestrin sug-
gests that they are major-effect loci. Nevertheless, since
the selected phenotype is not well defined, it is not pos-
sible to experimentally determine how much of the
phenotype can be explained by these two loci. It is pos-
sible that, despite the pronounced frequency increase of
SNF4Aγ and Sestrin, several loci of minor effect also
contribute to the selected trait, such that only a small
fraction of the phenotypic change can be attributed to
SNF4Aγ and Sestrin. We evaluated this hypothesis using
a quantitative genetics simulation framework [38]. We
assumed that, in addition to SNF4Aγ and Sestrin,

Fig. 3 Genomic signature of adaptation to a hot laboratory environment. a Manhattan plot displaying the Cochran–Mantel–Haenszel p values of
2,741,793 SNPs (Methods). The red line indicates the p value cutoff for the most significant 100 SNPs (in green). The red and blue arrows indicate
the SNF4Aγ and Sestrin peaks, respectively. b A close-up of Manhattan plot around the SNF4Aγ region. On top of the Manhattan plot the gene
structure of SNF4Aγ is shown together with three small genes (Snmp1, CG5810, and cDIP; see Additional file 2: Table S3) located in one large
intron of SNF4Aγ. Exons are indicated by colored boxes and introns by thin lines. White boxes indicate untranslated regions
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between 5 and 1000 loci contribute to the trait but were
not detected in our study. The sum of the effect sizes of
these background loci was set to be about ten times
higher than the effect size of SNF4Aγ or Sestrin. Condi-
tional on the observed rapid allele frequency change of
SNF4Aγ and Sestrin, our simulations indicated that at
least 45% of the phenotypic change could be explained
by these two focal loci (see Fig. 4 and Additional file 1:
Supplementary Results). Only when a small number of
additional large-effect loci contribute to the trait do
SNF4Aγ and Sestrin explain a smaller fraction of the
phenotypic change. Nevertheless, in this case these loci
also experience a frequency increase that would have
been detected in our experiment (see Fig. 4). It is im-
portant to note that we assume that the other peaks in
Fig. 3 which exceed the significance threshold do not
contribute to the same trait as SNF4Aγ and Sestrin.

SNF4Aγ variants in the North American and Australian
latitudinal clines
Because the SNPs which responded to the new hot en-
vironment were present at intermediate frequency in the
European population, we reasoned that they exhibit cli-
nal variation in natural populations. Because the precise
causative variant is not known for SNF4Aγ and Sestrin,
it is not possible to test its distribution in natural popu-
lations directly. Nevertheless, we reasoned that the hap-
lotypes carrying the target of selection may be partially
preserved in other D. simulans populations; thus, we
tested those SNPs of the selected haplotype block in our
experiment that were also detected in clinal populations
from two different continents [21, 23]. While for Sestrin
no clinal signal was detected, out of 28 candidate SNPs
in the SNF4Aγ region increasing in frequency in our ex-
periment, 21 were shared with the US populations

Fig. 4 Two focal loci explain most of the phenotypic change, independent of the number of background loci. Numbers show the percentage of
phenotypic change explained by the two focal loci, color codes the proportion of simulations in which they are significantly increasing in
frequency. We used a quantitative trait model with a range of distances to the phenotypic optimum and different numbers of background loci
contributing to the phenotype in addition to the two focal loci. With few additional loci of similar effect size (first three rows), the contribution of
SNF4Aγ and Sestrin to the phenotypic change is minor, but the probability to detect them as outlier SNPs is low
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described by Machado et al. [21]. Eleven (52%) of these
SNPs were at lower frequency in Maine than in Florida
(see Additional file 1: Figure S14) and showed a clinal
pattern among the Florida, Virginia, and Maine popula-
tions (Additional file 1: Figure S14). Samples from Penn-
sylvania, however, did not fit this clinal pattern and
exhibited higher frequency than expected. From August
to November, we observed a decrease in frequency of the
hot alleles (i.e., those selected in the hot cages), an indica-
tion that our candidate SNPs could also be seasonal. Inter-
estingly, despite the fact that the actual target of selection
is not known, the clinal frequency change is highly signifi-
cant (p < 0.008) based on Student’s t test for 10,000 ran-
dom sets of SNPs generated by jackknifing 21 SNPs out of
the 197 SNPs segregating in the region of interest (3R:
4,239,638-4,271,390, Additional file 1: Figure S15).
In the Sedghifar et al. [23] data set, we identified 15 and

23 SNPs from our list of 28 SNF4Aγ candidates in the
North American and Australian populations, respectively.
In the North American cline, we found a similar pattern
as in the Machado et al. data set (see Additional file 1:
Figure S16): in the Florida population, all the hot alleles
were almost fixed (median allele frequency = 1), while they
had lower frequencies in the Rhode Island population
(median allele frequency = 0.94). This difference was
significant based on the resampling test described above
(see Additional file 1: Figure S16). In the Australian cline,
the pattern was inversed, as the allele frequencies of our
hot alleles were lower in the Queensland population
(lower latitude, median = 0.77) than in the Tasmanian
population (higher latitude, median = 0.87 (see Additional
file 1: Figure S17). Interestingly, this trend is consistent
with the observation of Sedghifar et al. that clinal SNPs
were preferentially going in the opposite direction. In the
light of this consistent trend, we conclude that the se-
lected haplotypes in the Portugal population are also suffi-
ciently conserved in Australia to generate a significant
clinal signal.

Discussion
Novel thermal environment induces a rewiring of
metabolic regulation
Temperature is a major factor modulating the expres-
sion of numerous genes in ectotherms and is particularly
well studied in Drosophila [19, 20, 39]. Our experimental
populations which evolved in a novel hot thermal envir-
onment displayed highly significant differences in gene
expression involving many genes of well-defined path-
ways. Of particular interest were genes which were
down-regulated in the hot-evolved populations, because
they suggest a global down-regulation of energy produc-
tion in hot-evolved flies, affecting glycolysis, TCA cycle,
and oxidative phosphorylation pathways. Interestingly, a
highly replicated study in Escherichia coli found that

RNA polymerase was the most frequently targeted gene
across replicates, resulting in a lower rate of protein syn-
thesis [40], providing further evidence that an important
evolutionary response to hot environments is to reduce
the increase in energy production and protein synthesis,
which is increased in hot environments and probably
imposes a significant cost.
Consistent with modified metabolic rewiring of the

hot-evolved populations, we found significant differences
in CO2 production relative to the ancestral and
cold-evolved control populations (see Fig. 2e; Additional
file 1: Figure S3 and Supplementary Methods and Results).
Contrary to naïve expectations, CO2 production was
higher in the hot-evolved flies. Nevertheless, resting
metabolism and gene expression are measured at two dif-
ferent moments of the daily cycle of the evolving popula-
tions, suggesting that the link between gene expression
and energy production might not be straightforward.
Additionally, higher CO2 production in hot-evolved flies is
consistent with increasing O2 consumption associated
with decreased AMPK activity [41]. Further insights into
this counter-intuitive pattern of CO2 consumption come
from a metabolomic analysis of D. melanogaster under a
wide range of developmental temperatures [42]. At ex-
treme temperatures the flies were depleted of sugars and
energy metabolites (NAD+, NADP+, and AMP), which is
attributed to their inability to maintain cellular homeosta-
sis. If the hot conditions of our experiment have the same
effect, flies not evolved to this environment may also be
depleted of sugars and energy metabolites. In response,
enzymes in the glycolysis, TCA cycle, and oxidative phos-
phorylation pathways could be up-regulated. Hot-evolved
flies may have acquired the ability to maintain cellular
homeostasis at high temperatures, allowing a higher rest-
ing metabolism without up-regulation of the metabolic
pathway genes.
Our results contrast a recent study where CO2 pro-

duction was conserved among D. melanogaster popula-
tions which evolved in different thermal environments
[43]. With several experimental details differing between
the studies (isofemale lines vs. pools of outbred individ-
uals, 20 min measurements during the day vs. resting
metabolism overnight), the interpretation of this appar-
ent discrepancy is difficult. Nevertheless, it aligns well
with the general controversy about the effect of
temperature on the evolution of metabolism [44]. We
conclude that the consistent differences in CO2 produc-
tion between ancestral and evolved populations provide
strong evidence of temperature-specific evolution of me-
tabolism regulation but also indicate that the underlying
physiological changes are more complex.
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AMPK explains the phenotypic changes observed in
hot-evolved populations
Based on the genomic analyses alone, it is not possible
to rule out other genes in the Sestrin peak as targets of
selection, or three other small genes that overlap with
the selection signature of SNF4Aγ (Additional file 2:
Table S3). In combination with the expression data,
however, the role of SNF4Aγ and Sestrin as the primary
drivers of the metabolic rewiring becomes evident.
Sestrin modulates the phosphorylation rate of
AMP-activated protein kinase (AMPK) [45], which is
composed of SNF4Aγ and two other subunits. AMPK is
a key player in energy homeostasis at the cellular and
the organismal levels, and both SNF4Aγ and Sestrin are
directly linked to AMPK activity [45–47]. Low levels of
ATP result in the activation of AMPK, which causes
up-regulation of glycolysis and biogenesis of mitochon-
dria [48]. Furthermore, energetically costly pathways,
such as fatty acid production and gluconeogenesis, are
down-regulated by AMPK [49]. Inactivation of AMPK
causes down-regulation of glycolysis and up-regulation
of anabolic pathways such as fatty acid production,
which were both seen in our data. Interestingly, Pfk, the
target enzyme for AMPK in glycolysis, is the first
down-regulated enzyme of the glycolysis pathway in our
data set (Fig. 2a, blue arrow). In D. melanogaster, RNA
interference-mediated down-regulation of SNF4Aγ in-
creases glucose content of muscles and the fat body [50]
and induces starvation behavior [41]. Some of the genes
of the insulin receptor signaling pathway were also dif-
ferentially expressed in the hot-evolved populations
(Ilp6, InR, see Additional file 1: Figure S1). Moreover,
some key enzymes involved in fatty acid production
(ACCoAs, ACC and FASN2, Desat1, CG30008,
CG33110, CG18609; see Additional file 1: Figure S1) also
show also signal of up-regulation, consistent with the
direct inhibition of ACC by AMPK [51]. Increased tem-
peratures and heat stress deplete fat storage in D. mela-
nogaster [52] by invoking apoptosis in the fat body — a
process dependent on SNF4Aγ [53] that links the
starvation-like expression pattern observed here to
temperature adaptation. Sestrin is also connected with
autophagy regulation in Drosophila, through its role in
activating AMPK [54, 55].
Thus, our results indicate that the activity of the key

metabolic regulator AMPK is modulated through the
differential regulation of the subunit SNF4Aγ and inter-
acting gene Sestrin in hot-evolved populations. Given
the central role of SNF4Aγ and Sestrin for
temperature-dependent metabolic rewiring, we reasoned
that both genes should vary along temperature clines in
natural populations. While we did not find evidence for
clinality of Sestrin, the patterns for SNF4Aγ matched our
expectations. A whole genome polymorphism analysis

identified SNF4Aγ as one of the top candidates in clinal
North American D. melanogaster populations [22]. Cli-
nal and seasonal variation of SNF4Aγ in D. melanogaster
and D. simulans further implicate temperature as an
adaptive driver [21, 24]. Reanalyzing clinal population
genetic data [23], SNF4Aγ is among the 603 most differ-
entiated genes shared by North American and Australian
D. simulans populations. Gene expression of SNF4Aγ is
clinal in European D. subobscura populations, with
southern populations having lower expression levels
[19], which parallels the response observed in our ex-
perimental evolution populations. Because the selected
haplotype block may be partially maintained in other
populations, we tested the diagnostic SNPs for clinal
variation. Remarkably, populations from the extreme
ends of the North American cline exhibit a clinal signal
for the diagnostic SNPs. Nevertheless, the signal was
mixed for less extreme populations.

Large-effect loci segregating at intermediate allele
frequencies drive rapid evolution
The combined analysis of transcriptomic and whole gen-
ome resequencing data of a freshly collected D. simulans
population evolving in a new thermal environment iden-
tified two genes, both connected to AMPK, a central
metabolic switch. While many possibilities exist as to
how metabolism could be regulated, the strong selection
response in all replicates suggests that two major-effect
loci are driving the adaptive metabolic response in our
populations. The observed selection signature clearly in-
dicates that adaptation in our E&R study [27] is domi-
nated by a small number of loci with strong effect,
providing another example for rapid adaptation driven
by a few major-effect loci [12–16].
The two haplotypes driving the metabolic switch in

our experimental populations segregate at intermediate
frequencies in the founder population and show clinal
variation. Thus, it is highly plausible that these genes
contribute to similar adaptive processes in natural popu-
lations, which probably occur over very short time
scales. Because temperature varies seasonally, it is pos-
sible that spatial and temporal heterogeneity maintains
the selected alleles at intermediate frequency in D. simu-
lans [10, 24].
The fact that few large-effect loci resulted in a clear se-

lection signature in our experiment does, however, not
preclude that several minor effect loci also influence the
metabolic rewiring in hot environments. Yet, our com-
puter simulations suggest that these two loci probably
explain more than 50% of the phenotypic change, even
when minor effect loci are also contributing (Fig. 4). Pre-
viously, it had been shown that major-effect alleles con-
tributing to quantitative traits show the fastest selection
response, but with an increasing number of generations
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these loci are out-competed because small-effect alleles
gradually increase in frequency [56]. The reason for the
loss of the large-effect alleles is that it is easier to obtain
genotypes close to the fitness optimum with small-effect
alleles, while large-effect alleles could cause overshoot-
ing, resulting in more extreme phenotypes than favored
by selection. Hence, the analysis of these experimental
populations after a longer time interval could be very in-
formative to understand the dynamics of adaptive alleles
in natural populations.
With the favored allele being fixed or close to fixation

in southern populations in the USA, it would be inter-
esting to study the adaptive response in these popula-
tions. Because AMPK will probably not further
contribute to adaptation, such an experiment could re-
veal other adaptive signals that were not detected in this
study. Would such populations be segregating for other
major alleles or would a polygenic response detected?

Next steps
Experimental evolution provides an excellent framework
for experimental testing of selected alleles. Allelic re-
placements with the CRISPR/Cas9 technology enable
the direct comparison of selected and non-selected al-
leles in an otherwise homogeneous genetic background.
Nevertheless, the mapping resolution in our study is still
rather low. Replacing a genomic region of > 10 kb in D.
simulans, a species with lower transformation efficiency
than D. melanogaster, is extremely challenging. Thus,
the next steps would require some further fine mapping
of the target of selection. We anticipate that adding
chromosomes without the selected alleles during an ex-
tended experimental evolution will provide more oppor-
tunity in recombination to obtain a smaller candidate
region. Once sufficiently small candidate regions are
cloned, many follow-up experiments are conceivable,
ranging from competition experiments of selected and
non-selected alleles in an experimental evolution setting
to detailed biochemical comparisons using metabolo-
mics, transcriptomics, and proteomics.

Conclusions
We demonstrate with empirical data acquired at several
biological levels (genomic, transcriptomic, metabolism,
fecundity) that rapid adaptation to novel thermal envir-
onment involves rapid evolution of metabolism regula-
tion that can be explained by large-effect alleles rising in
frequency. We suggest that these alleles are maintained
at intermediate frequencies in natural populations by
temporal and spatial variations. Finally, we propose that
E&R studies using different founder populations are a
very powerful approach to answer questions about the
genetic architecture of rapid adaptation, which are diffi-
cult to infer from natural populations.

Methods
Experimental evolution and common garden experiments
A detailed description of the experimental procedures
can be found in Additional file 1: Supplementary
Methods and Results. Briefly, ten replicated populations
were created from a wild population of Drosophila simu-
lans (Portugal 2008) and distributed randomly to two
different selective regimes: a hot treatment with 12 h at
18 °C (dark) and 12 h at 28 °C (light) and a cold treat-
ment with 12 h at 10 °C (dark) and 12 h at 20 °C (light).
The replicate populations were then propagated the
same way with non-overlapping generations and a cen-
sus population size of 1000. After 64 and 39 generations,
respectively, in the hot and cold treatments, we assayed
all ten populations together with five replicates of a
reconstituted ancestral population at 23 °C in a common
garden experiment. Males aged 3–5 days old were frozen
in liquid nitrogen and stored at − 80 °C for RNA
sequencing.

Pool-Seq analysis
Genomic DNA for pooled sequencing of the ancestral
and the hot-evolved flies from generation F59 was ex-
tracted from females only. For each evolved popula-
tion, DNA was extracted from about 500 females.
Since only two replicates of the founder females were
frozen (1250 females each), we added one replicate
from generation F2 as a substitute. Genomic DNA was
extracted using either the DNeasy Blood and Tissue
Kit (Qiagen, Hilden, Germany) (for the two ancestral
replicates) or a high salt extraction protocol [57] in-
cluding RNase A treatment for the evolved popula-
tions. Paired-end libraries were prepared with different
protocols and sequenced on different Illumina plat-
forms (see Additional file 1: Table S6 for details).
When the coverage of the first runs was not sufficient,
we resequenced the populations at a later stage with a
HiSeq2500 in 2 × 120 bp runs which required a modi-
fied adapter configuration (see Additional file 1: Table
S6). The reads of the ancestral and the generation F2
replicates were combined and then randomly split into
five artificial data sets to serve as replicated ancestral
populations that match the number of replicates in the
hot-evolved populations. SNPs were called with
PoPoolation2, keeping only sites with at least one read
with the minor allele per sample and coverage between
5 and 500. We masked sites flanking indels (± 5 bp)
and repeats using PoPoolation2 [58] and RepeatMasker
(www.repeatmasker.org, file available on demand).
While library preparation protocols do not affect allele
frequency estimates based on Pool-Seq [59], insert size
does [60]. Therefore, we mapped the trimmed reads
(quality ≥20 and length ≥ 50 bp) to the reference gen-
ome [61] using three different mappers (Bowtie2 [62],
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bwa-mem [63], and Novoalign [64]). Using only the
SNPs called with all three mappers and restricting the
analysis of each SNP to the mapper resulting in the
least significant comparison (CMH test) prevents false
positives [60]. We filtered for proper pairs and map-
ping quality ≥20 and finally retained 2,741,793 SNPs.
We used Wright-Fisher simulations to estimate allele
frequency changes expected in the absence of selec-
tion. Five independent simulation runs were per-
formed, matching the initial frequency distribution of
our ancestral populations and the number of SNPs
tested in the original data set. We then added sampling
noise to mimic the Pool-Seq process (binomial sam-
pling) and conducted CMH tests on these simulated
data, similarly as for the empirical data set. This way,
we obtained a null distribution of CMH-based p values
under a null hypothesis. Given a certain p value
threshold, the false positive rate was computed as the
fraction of simulated (neutral) and empirical loci. All
simulations, sampling noise additions, and CMH tests
were performed with the R package poolSeq [65].
There were 27 genes that contained at least one

candidate SNP (Additional file 2: Table S3). Since
SNF4Aγ was a good candidate to explain the ob-
served phenotypic changes, we focused the subse-
quent analysis on a 200-kb region on chromosome
3R (4,150,000:4,350,000, see Fig. 2b). Reasoning that
candidate SNPs may be located on one or a few hap-
lotypes only, we used a haplotype reconstruction
method that relies on the identification of SNP
markers showing a correlated response across repli-
cates and time points [66]. Allele frequencies for this
analysis were based on Novoalign. Using the software
package haploReconstruct [66], we identified SNPs
with a correlation of least 0.95. We found 28 diag-
nostic SNPs (minimum coverage 20, minimum allele
frequency change 0.2 in all five replicates).
We estimated the effective population size (Ne) using

the method of Jonas et al. [67], which accounts for the
sampling procedure of Pool-Seq (plan I) based on all
polymorphic sites of chromosomes 2 and 3. We inferred
the selection coefficient (s) based on an Ne estimate of
219 and mean allele frequency of the 28 SNPs across all
three replicates at the start of the experiment and at
generation 59 using the method of Taus et al. [65] (Add-
itional file 1: Figure S6).
The same procedure was then repeated for the Sestrin

locus (2R-17,520,000:17600000, see Additional file 1:
Figure S7). Using the haplotype reconstruction method,
we found 95 diagnostic SNPs (minimum coverage 20,
minimum allele frequency change 0.2 in all five
replicates) showing correlated allele frequency changes
(Additional file 1: Figure S8). We estimated the selection

coefficient (s) based on these 95 SNPs (Additional file 1:
Figure S9) using the same Ne estimate (219).
Since the results of our experimental evolution study

may be affected by inadvertent migration events, we also
tested whether migration may have resulted in false pos-
itives, but we consider this unlikely (see Additional file
1: Supplementary Methods and Results).

Haplotype sequencing and analysis
We crossed 24 males from two different evolved popula-
tions (replicates 1 and 3, F67) with a virgin female from
our reference D. simulans strain M252 (Genbank Bio-
Sample SAMN02713493, [61]). DNA extraction and se-
quencing were then produced from a single F1 female
from each of the 24 crosses. Genomic DNA was ex-
tracted using a high salt extraction protocol [57] includ-
ing RNase A treatment, and paired-end libraries were
prepared and sequenced on the Illumina HiSeq 2500
(see Additional file 1: Table S6 for details). Reads were
trimmed and mapped using bwa-mem as described
above for pool sequencing. Additionally, we only
retained the 2,741,793 SNPs which were consistently
called by all three mappers in the Pool-Seq analysis and
analyzed in our CMH test (Fig. 3b). SNPs with a cover-
age lower than 10 for a given haplotype were considered
missing. We generated Figures S10 to S13 of Additional
file 1 using the function heatmap.2 from the package
gplots in R. While it is likely that these sequences repre-
sent naturally occurring haplotypes, we cannot rule out
that recombination during the isofemale line stage has
created a haplotype that is unlikely to occur in the wild.

Phenotyping
We contrasted the phenotypes of hot-evolved, cold-evolved,
and ancestral populations in a common garden setting,
where all populations were maintained for two generations
in the target temperature of 23 °C. We note that
hot-evolved and cold-evolved populations were separated
from the founder population by a different number of
generations because of the faster development at warm
temperatures. This may imply that the differences between
hot- and cold-evolved flies may reflect different generation
numbers, rather than a different selection response. While
it is not possible to compare flies from the two temperature
regimes at the same generation, we note that CO2 produc-
tion (see the subsequent discussion) was tested at gener-
ation 74 of the cold-evolved flies, which roughly matches
the generation at which the expression profile of the
hot-evolved flies was determined (F64). Because CO2 pro-
duction suggests no metabolic difference between the an-
cestral and cold-evolved flies, we conclude that the
observed gene expression differences related to metabolism
are unlikely to reflect only different generation numbers.
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Gene expression analysis
We performed gene expression analysis of flies evolved
for 64 generations in the hot environment and 39 gener-
ations in the cold environment. For all 15 populations
(five replicates each in the hot, cold, and ancestral popu-
lation) we generated two RNA-seq libraries, each from
different sets of males. Total RNA was extracted from
25 to 30 males using the Qiagen RNeasy Universal Plus
Mini protocol (Qiagen, Hilden, Germany) with DNase I
treatment according to the manufacturer’s instructions.
Libraries were generated using the NEBNext® Ultra
Directional RNA Library Prep Kit for Illumina (details in
Additional file 1: Supplementary Methods and Results).
Raw reads were trimmed using PoPoolation [68] (quality
threshold 20, minimum length 40) and aligned to the
Drosophila simulans reference genome using GSNAP
([69], version 2018-03-25 with the option –m 0.008)
using a Hadoop cluster [70]. Throughout this study, we
used the genome and annotation of Palmieri et al. 2015
[61] as a default reference. All statistical analyses were
performed using R [71]. Read counts were determined
with Rsubread [72], and differentially expressed genes
were identified with edgeR [73, 74]. We normalized gene
expression levels with the trimmed mean of M-values
(TMM) method, restricting our analysis to the 70% most
highly expressed genes (minimum mean count per mil-
lion (CPM) 6.81, 9238 genes). We used negative bino-
mial GLMs to estimate the effect of selection regime on
gene expression. We then computed ad hoc contrasts to
find differentially expressed genes between groups of
interest. The Benjamini–Hochberg procedure was ap-
plied to control for false discovery rate (FDR < 0.05).
Using these differentially expressed genes, we per-

formed KEGG pathway enrichments with the R package
gage [75] using the logFC computed by edgeR. GO en-
richment analyses were performed with GOrilla [76],
where all genes retained after filtering were used as the
background data set. We only considered genes differen-
tially expressed in the comparison of the hot samples
against the ancestral as well as against the cold popula-
tions. Furthermore, in the comparison of the ancestral
against the cold population the |logFC| was smaller than
0.2 (reported in Additional file 2: Table S2).

Resting metabolism
Resting metabolism was determined by repeatedly meas-
uring overnight CO2 emission using a stop-flow respi-
rometry system (Sable Systems International, North Las
Vegas, NV, USA). All replicates of evolved and ancestral
populations were reared for two generations at 23 °C,
controlling egg density (400 eggs per bottle). Flies were
collected shortly after eclosion, and after 24 h males and
females were separated and placed at low density in vials
(25 flies/cm3) under CO2 anesthesia. After 48 h recovery,

the CO2 emission of 3–5 day old males and females was
measured. Each assay was conducted at 23 °C in the
dark, overnight (at least 12 h). The flies from different
replicates were randomly assigned to one out of eight
chambers together with a small piece of fly food (2 cm3)
to avoid starvation response and desiccation. Each
chamber contained approximately 25–30 flies. During
the assays, a multiplexer (RM8 Intelligent Multiplexer)
was sequentially flushing the metabolic chambers. Each
flushing cycle lasted 5 min at a constant flow rate of
50 μl/min. We obtained repeated measurements in
40-min intervals for each of the eight channels. After re-
moval of water by passing through a magnesium per-
chlorate column, we measured CO2 in the flushed
air with a CA-10A Carbon Dioxide Analyzer. For each
flushing cycle we determined the total CO2 emission
using the ExpeData software (Sable Systems Inter-
national) with an in-house script (available on demand).
At the end of each assay the flies were dried and
weighed.
We conducted the assay after generation 127 (74) of

the hot (cold) evolved populations contrasting all three
populations (2 ancestral populations, 4 cold and 4
hot-evolved populations, 5 successive runs), and a sec-
ond time after 133 generations (5 hot replicates and 4
ancestral replicates, 4 runs). We estimated the resting
metabolism for each chamber as the average of the three
lowest observations overnight [77]. During the first set
of measurements (generation 127), one chamber was left
empty as a negative control. Because the CO2 levels in
the empty chamber were always very low compared to
the CO2 levels of chambers containing flies, we used all
eight chambers with flies for the second set of measure-
ments (generation 133). We analyzed the data with lin-
ear models. The most complete model included fixed
effects of sex, mean dried weight, population identity
(ancestral, cold-evolved, or hot-evolved), and interac-
tions of these explanatory variables. Model comparison
and selection of fixed effects occurred by stepwise re-
moval of non-significant interactions and main effects,
using analysis of variance (ANOVA) F tests. The as-
sumptions of the models (normality of the residuals and
homogeneity of the variance) were validated by visual in-
spection of the residuals.

Fecundity assays
We conducted fecundity assays of the cold- (F78) and
hot- (F133) evolved populations in parallel with a recon-
stituted ancestral population using the same common
garden design as described above. The only modifica-
tions were that we performed two generations of density
control rather than a single one and that the ancestral
population was reconstituted from ~ 90–100 lines only.
In parallel, we set up another common garden
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experiment that differed only in the temperature regime,
which was not constant but cycled between 28/18 °C
light/dark conditions.
Flies were collected shortly after eclosion and allowed

to mate within a 24-h period. Approximately 60 flies
were placed under CO2 anesthesia in separate bottles to
estimate egg laying rates. We created two bottles for
each replicate (30 bottles in total). Every day, all flies
were transferred without CO2 anesthesia to fresh food,
and the eggs laid were counted. We did not count the
eggs laid during the first 24 h after anesthesia and re-
corded the next 5 consecutive days. After 6 days the flies
were then sexed and counted. We determined the mean
number of eggs per female in a 24-h interval for each
replicated population and tested for differences between
populations using linear models in R. Significance of the
fixed effects was tested using ANOVA F tests and differ-
ences between populations using Tukey tests (using the
multcomp library and appropriate contrasts). At 23 °C,
we excluded the results of two hot-evolved replicates
(the 3rd and 4th) due to problems with the density con-
trol, and the data from only three replicates were used.

Computer simulations
We used the framework of Franssen et al. [38] imple-
mented in a Python script available on dryad (https://
doi.org/10.5061/dryad.403b2). It models allele frequency
changes of selected loci, all contributing to the same
quantitative trait. Each locus is defined by a relative ef-
fect size, and its initial frequency and all loci are inde-
pendent. The model assumes that individual fitness is
normally distributed along the phenotypic axis and al-
lows varying the initial distance to the fitness optimum
in the ancestral population. We assumed that our two
focal loci, SNF4Aγ and Sestrin, contribute to the trait
proportionally to their coefficient of selection and mod-
eled additional loci with an equal effect size. Because the
effect sizes of all selected alleles are parameterized rela-
tively to each other (i.e., summing up to 100% of total
potential effect size), we maintained the summed effect
sizes of all alleles constant between simulations. Thus,
the number of background loci is inversely proportional
to their effect size. We randomly sampled their starting
frequency in the distribution of initial allele frequency in
our experimental population (polarized according to the
reference allele). The model assumes a Gaussian fitness
function. We fixed the standard deviation (0.2) as well as
the minimum and maximum fitness values (0.5 and 1.5,
respectively) of the function and allowed the mean fit-
ness optimum to vary.
We conservatively assumed that all loci contributing to

the adaptive phenotype in addition to SNF4Aγ and Sestrin
(background loci) had about a four times larger effect size
than SNF4Aγ and Sestrin together (summed effect size of

background loci = 0.5, effect size of SNF4Aγ = 0.07, effect
size of Sestrin = 0.06). We assume here that there could be
~ 8 additional loci of the same effect size of SNF4Aγ or
Sestrin or ~ 80 loci with an effect size ten times smaller
than that of SNF4Aγ or Sestrin.
We computed the initial mean phenotypic value of the

population (0.18) assuming that the frequency distribu-
tion of the background loci matches the one of all SNPs
(mean frequency: 14%). The maximal phenotypic value
when both SNF4Aγ and Sestrin are fixed (0.32) is then
only 15% of the potential phenotypic increase (the max-
imal value is 1). We performed computer simulations
varying two parameters: the number of background loci (5
to 1000) and the phenotypic value that maximize fitness
(0.3 to 0.7). For each parameter combination, we per-
formed 50 independent simulations. For each simulation,
we report the proportion of the observed phenotypic
change explained by our two focal loci after 60 genera-
tions in five independent replicates. We used the allele fre-
quency after one generation as the initial value to account
for random variation between replicates. To compare
these simulated results to our experiment, we also com-
puted a CMH test. To match the experimental data for
each simulated locus, we randomly sampled “reads” at F1
and F60 matching the coverage of a chosen SNP in the ex-
perimental data set. We then computed for each set of pa-
rameters the proportion of simulations in which at least
one SNP was above our CMH cutoff. We matched the
population size with the empirical estimate (Ne = 219).

Reanalysis of latitudinal North American and Australian D.
simulans populations
We analyzed two published data sets of D. simulans popu-
lations along a cline [21, 23]. First, we used FST to deter-
mine whether the SNF4Aγ and Sestrin regions were
differentiated along the clines. Since FST values do not in-
dicate the direction of allele frequency differences, we per-
formed a second analysis testing specifically whether the
difference in allele frequencies between northern and
southern populations along a cline differs in the direction
expected based on our experiment. Below, we describe the
analysis for each of the two data sets separately.
We downloaded, trimmed, and mapped the raw data

from Machado et al. [21] using the same pipeline as de-
scribed above but using only a single mapper (Novoalign).
All alignment files were converted into an mpileup file
using SAMtools. We restricted our SNP-based analysis to
the individual sequences that were collected from four
populations from Florida, Virginia, Pennsylvania, and
Maine (thus excluding the pools). The Pennsylvania popu-
lation was sampled three times the same year in August,
September, and November 2011. We called the 28 SNPs
of SNF4Aγ occurring on a haplotype block in the Portugal
population in each population. At all 21 positions, we
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classified each sample in four categories: homozygous for
either allele, heterozygous, or unknown. As the coverage
for each sample was relatively low (1.8-fold), all reads were
used to determine the genotype of each individual. Based
on this classification, we computed the frequency of all
the rising SNF4Aγ variants along the cline for each pos-
ition. Only SNPs were used for which we genotyped in at
least half of the samples in each population, which re-
duced the number of SNPs to 20.
We downloaded, trimmed, and mapped the raw data

from Sedghifar et al. [23] using the same pipeline as de-
scribed above but using only a single mapper (Novoalign).
All alignment files were converted into an mpileup file
using SAMtools, and we computed FST between popula-
tions at each polymorphic position using PoPoolation2
[58]. We filtered for transposable element insertions and
sites flanking indels (± 5 bp) and only retained SNPs with
a minimum coverage of 10. The FST values were
computed for all positions individually while accounting
for different numbers of chromosomes in each pool
(6,795,806 and 7,990,580 SNPs in the USA and Australian
clines, respectively). Focusing on the SNPs with the stron-
gest differentiation, we retained only the top 0.1% SNPs
with the highest FST values, resulting in FST thresholds of
0.53 and 0.52 in the Australian and American populations,
respectively. These SNPs mapped to 2053 and 1506 genes,
out of which only 603 genes were shared. Additionally, we
compared the allele frequencies of our SNPs of interest in
the SNF4Aγ region across the two clines (Sestrin was not
among the 603 shared genes). We called the SNPs on each
cline separately and only retained SNPs with a minimum
coverage of 30 in each of the sampled sites.
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