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Concept of population structure

• A population may have substructure –
differences in  genetic variation among its 
constituent parts.

• low gene flow, genetic drift, selection, and 
mutation lead to genetic variation in 
subpopulation



Characteristics

• The number of subpopulations within it.

• The frequencies of different genetic variants 
(alleles) in each subpopulation.

• The degree of genetic isolation of the sub 
populations.



Method in populaton structure

Model-based clustering method Distance- based (Principal 
components)



structure

• A model-based clustering method (Pritchard et al. 
2000)

• Bayesian approach (MCMC: Markov Chain Monte 
Carlo)

• Detects the underlying genetic population among 
a set of individuals genotyped at multiple 
markers.

• Computes the proportion of the genome of an 
individual originating from each inferred 
population.



Concept of structure

(p + q)2 = p2 + 2pq + q2 = 1
A = p, a = q 
AA, Aa, aa

1. Hardy-Weinberg equilibrium  

2. linkage equilibrium 

The random association of alleles at different 
loci

Within population



Parameter

• Ancestry Models

• Allele frequency models

• Running length



Ancestry Models

no admixture model

Admixture model

Linkage model

Model with informative 
priors 

Correlated allele 
frequencies

Independent model 

Allele frequency 
models



Ancestor model

1. No admixture model. each individual is assumed to have 
originated in a single population

2. Admixture model. Individuals may have mixed ancestry, is a 
common feature of real data 

3. Linkage model. This is essentially a generalization of the 
admixture model to deal with “admixture linkage 
disequilibrium”(genetic map)

4. Using prior population information. there is often additional 
information that might be relevant to the clustering



Allele frequency

• 1. Correlated allele frequencies:

Frequencies in the different populations are likely to be 
similar(migration or share ancestry)

• 2. Independent model: 

Allele frequencies in different populations to be reasonably 
different from each other(improves clustering for closely related 
populations but over estimate k)

• Same population = correlated model, 



Running length

• length of burn-in period and Number of 
MCMC Reps



(1) Burnin length: how long to run the simulation before
collecting data to minimize the effect of the starting 
configuration

Typically a burn-in  is 10000—100000



(2) How long to run the simulation after the burnin to get 

accurate parameter estimates.

Several runs at each K and whether you get consistent 

answers, 10000-1000000.



burn-in period



burn-in period



Number of MCMC Reps



Example 
File -> new project -> name the project + select 
directory + choose data file -> number of individual 
(13) + ploidy of data (2) + number of loci (2444) + 
missing data value (-9) -> skip -> choose individual ID 
for each individual -> ProceedParameter set -> new -
> length of burnin period (50000) + number of mcmc
reps after burnin (500000) -> name parameterProject
-> start a job -> set k from m to n (i.e. 2-4) + number 
of Iterations (3 or 5) -> startCompress the result and 
upload to Structure Harvester.File -> load structure 
results -> Browse (choose your result with the best 
value of K)-> Bar Plot -> show -> sort by Q -> save



• the result and upload to Structure 

• Harvester.File -> load structure results -> 
Browse (choose your result with the best 
value of K)-> Bar Plot -> show -> sort by Q -> 
save





PCA

• PCA is a statistical procedure that uses an orthogonal 
transformation to convert a set of observations of 
possibly correlated variables into a set of values of 
linearly uncorrelated variables called principal 
components(from wikipedia)



Concept of PCA





• A(a1,a2)*B(b1,b2)=a1*a2+b1*b2

• A*B=丨A丨丨B丨*cos a

• Let丨B丨= 1, then

• A*B=丨A丨cos a



• Vector (3,2) represent 

a vector which maped

in X vector is 3, in Y vector

is 2.

Vector (3,2) is seen as



• If we transfer （3，2）
to a new coordinate 
axis, we  can use 



• If we have three vector (1,1), (2,2),(3,3),
transfer them to the new coordinate axis



• So if we have M n-dimensional vectors , 
transfer them to a new n-dimensional space 
with R n-dimensional coordinate axis . 

M: (p1aM, p2aM,…….,PRaM)



Example 

• We have (1,1), (1,3), (2,3), (4,4), (2,4)

Reduce  X



If we want 
to use 1-
dimensional

to represent 

the data….



If we want 
to use 1-
dimensional

to represent 

the data….



If we want 
to use 1-
dimensional

to represent 

the data….



If we want to use 1-
dimensional
to represent 
the data….

So , the data 
distribute  more 
dispersive, can 
represent well. 
In mathematic, we 
can use  variance. 
Variance more large, 
data more 
representative.



• If we want to use 2-dimensional form to 
represent the 3-dimensional data.....

• Firstly, we choose the largest variance vector 
to be a coordinate axis. 

• If we also choose the largest variance to be  
another coordinate axis… 

• It will give us a repetitive imformation.



• So the best way is to find the unrelated vector, like the  
vertical vector.

• In probability theory and statistics, covariance is a measure of 
how much two random variables change together. 

• If two variance both are independent , covariance of them is 
zero.



• How to find the covariance equal to zero but 
variance is the largest? 



XT = 
a1       b1
a2       b2
…         …
am bm



• If we have M N-dimensional data, we can arrange them to be a M*N 
matric X. And then set matric C =  1/m XXT .

• The the diagonals in the C yield variance and the i th row j th line value as 
same as j th row i th line value to yield covariance of  vector i and vector j .

• And then we get the eigenvalues and eigenvectors from C. we choose  K 
eigenvectors whic eigenvalues  from largest , if we need K-dimensional 
data, to arrange a matric P.

• Finally ,  Y = PX



Example

• dudi.pca



AMOVA

• Analysis of Molecular Variance (AMOVA) is a method 
of estimating population differentiation directly from 
molecular data and testing hypotheses about such 
differentiation.

• A variety of molecular data – molecular marker data 
(for example, RFLP or AFLP), direct sequence data, or 
phylogenetic trees based on such molecular data –
may be analyzed using this method (Excoffier, et al. 
1992).



Concept of AMOVA

Total 
variation

Variation Among 
group

Variation 
within demes•Xjig = X + ak + bjk + aijk Variation within a

group among demes



X
X

X
X

A
B
C

A, (1, 0, 0)
B, (1, 0, 1)
C, (0, 0, 1)

A  mutational event

A, (1,   0)
B, (0,   0)
C, (0,   1)

a         b         c a  b   c

m1

m2

m1  m2

Boolean vector



• Squared Euclidean distances are calculated for all pairwise 
arrangements of Boolean vectors, which are then arranged 
into a matrix, and partitioned into submatrices corresponding 
to subdivisions within the population (Excoffier, et al. 1992)



• The sums of the diagonals in the matrix and 
submatrices yield sums of squares (SS) for the 
various hierarchical levels of the population.

• The sum of squares of  submatrices is the sum 
of squared (SSD) deviations to describe the 
differentiation of population.



• How do we get the effect of variance in 
different levels? (covariance components)



• The variance components can be used to calculate a series of 
statistics called phi-statistics (φ), which summarize the degree of 
differentiation between population divisions and are analogous to F-
statistics. φ- statistics are derived as follows (Excoffier, et al. 1992; 
Excoffier 2001):
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