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Genome wide association

Genome wide association study (GWAS) is a genome-wide genetic variation (marker)
polymorphism in multiple individuals to obtain genotypes, and then genotypes and
observable traits, ie phenotypes For statistical analysis at the population level, the
genetic variation (marker) most likely to affect the trait is screened based on statistics
or significant p-values, and genes associated with trait variation are mined.
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QTL positioning principle

* The linkage analysis, which is called "linkage analysis", is based on the
linkage and recombination between functional genes and molecular
markers to achieve the location of functional genes.
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Single-label analysis using analysis of variance
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height= U+A*GT A+B*GT B+C*GT C+D*GT D+ E*GT F

e uis the population mean (that is, the intercept of the equation), coefficient A is
the genetic effect of the A locus, GT_A is the genotype of the Aa locus, which
may be aa, Aa, AA, of course, 0,1 can be used mathematically. 2 replacement.
Among them, the coefficients A, B, C, D, E are all variables to be solved.

* If we solve this multiple linear system of equations, we will find that A, D, and E
are all 0 (effect is 0), while B and C are significantly greater than 0, then the Bb
and Cc loci are inferred to contribute to height. So why do they contribute to
height? Because they are linked to functional genes, we know the initial location
of functional genes. This is the linear regression model in QTL positioning.



Simple linear regression model

In the actual case, the number of independent variables (number of
markers) may be greater than the dependent variable (number of
samples), so this equation is not accurate enough to obtain a unique
solution. Therefore, multiple linear regression equations are usually
reduced to one-dimensional linear regression equations. For example,
for the Aa locus, we can construct a system of equations as follows:

height = u+A*GT_A+e



The most widely used linear regression model

For example, in the figure below, individuals A and B have differences in
three QTL loci. It is assumed that the red genotype can increase the height
of the individual by 10 cm compared to the brown genotype. Now | want
to calculate the effect of Markerl. If we only consider the effect of a single
marker Marker1 (using Equation 2), the result of our calculation is that the
height advantage of A 30 cm is derived from the difference of Marker1,
and the effect meter of Marker1 is mistaken. It is 30 cm (overpriced).

Marker1 | Marker2 Marker3



But if we use multiple linear regression analysis, and combine Marker?2
and Marker3 into the equations, and consider their effects in the
equations, then the estimation of the Marker1 effect will be more

accurate (the three marker effects are 10 cm).

Marker1 Marker2 Marker3



However, the current high-density genetic map has hundreds or thousands
of markers. As mentioned above, if each marker effect is incorporated into
the equation, this equation can not be solved using the standard method
(Equation 1). Therefore, in the classic composite interval mapping, a
compromise is adopted. The general steps are as follows:

a) Screening several (eg, 10) most potent markers from the entire genome
using single-labeled regression and stepwise regression.

b) When calculating a marker (interval) effect, integrate those markers
with the strongest regional effects into the equations, such as the following
equation:

height = u+A*GT_A+[ B*GT_B+... ...+ K*GT K]+ e



height = u+A*GT A+[ B*GT B+... ..+ K*GT K]+ e

A is target mark
B~K is the most powerful marker in other regions of the genome.

In the equation, there are 11 unknown variables (A~K-labeled effects), which can be solved as
long as the individual is sufficiently large. The target mark is A (we expect to calculate their
effects). B~¥K is the most powerful marker in other regions of the genome. Although we don't
care about their specific effects for the time being, introducing them into the equation will
make us estimate the effect of A more accurately. We mark B~K as not a direct concern, but like
the independent variable (A mark), the same mark that affects the dependent variable (height)
is called a covariant.



LOD vaule

A calculation of genetic linkage, defined as the 10-based logarithm
(Ig) of the ratio of the likelihood data for a linked gene to the
likelihood data for a non-linked gene. It is generally assumed that the

LOD value of the gene linkage should be 3.0, which is a ratio of
1000:1.

e LOD=log10(L1/L0), where L1 is the probability that this site has a QTL,
and LO is the probability that this site has no QTL. If LOD=3, it means

that the probability of this site having QLT is 1000 times that of QTL-
free.



QTL positioning result diagram

2-LOD Confidence Interval: The result of QTL
mapping is a waveform of a LOD value that
changes on the chromosome (as shown below).
The LOD value of the QTL region forms a signal

|
1-LOD DECREASE

10(%{

peak. The functional gene is theoretically located
near the peak of the strongest signal (the largest 8
LOD value). But functional genes are usually only
located in this interval, not necessarily at the o
peak. The farther away from the peak tip
distance, the lower the LOD value and the lower
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the probability that the functional gene is located
at that position.
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Linkage Disequilibrium

Linkage Disequilibrium (LD) is a non-random association between
different loci within a population, including non-random associations
between two markers or between two genes/QTLs or between a
gene/QTL and a marker locus.

*|t refers to the probability that alleles belonging to two or more gene
loci appear on one chromosome at the same time, which is higher than
the frequency of random occurrence. Simply, as long as the two genes
are not completely independently inherited, they will show some
degree of linkage. This situation is called linkage disequilibrium. The
linkage disequilibrium can be different regions on the same
chromosome or on different chromosomes.



LD counts the difference between the actually observed haplotype frequency
and the expected frequency of the haplotype at random separation. Usually,
we use the formula :

D, =(Tz—7,75)

* For example, two adjacent genes A and B, their respective alleles are a and b. Assuming AB is
independent of each other, the probability of P(AB) appearing in the haploid genotype AB
observed in the progeny populationis P ( A) * P(B)

* The probability of simultaneous emergence of the haploid genotype AB in the population was
P(AB). If the two pairs of alleles are non-randomly bound, then P(AB)#P(A)*P(B). The way to
calculate this imbalance is:

D = P (AB) —P(A)* P (B)

Therefore, four haplotypes AB, aB, Ab, and ab may be formed.
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However, for a locus with only two alleles, such as a SNP, r2 and D' are usually used
to measure the LD level between the two loci.

2 2
Dy i -
|D'| - (Dav) for D, <0 2 (Dab)
min(7 7, 7, 7Tg) ro= JEp
. A’*a’*B’*h
(D))"

|D'| = for D_; >0

min(r Ty, T,7T))

R2 and D' reflect different aspects of LD. R2 includes recombination and mutation, while
D' only includes a history of recombination. D' can estimate the difference in
recombination more accurately, but the probability of a combination of low-frequency
four alleles is greatly reduced when the sample is small, so D' is not suitable for small
sample studies. R2 is usually used in the LD plot to represent the LD level of the
population.
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Result display --HEATMAP

In the actual analysis, we usually
get the genotyping file of the
sample. From this file, we can
easily calculate the frequency of
allel, but the frequency of the
haplotype cannot be directly
calculated. The probability of a
haplotype is calculated and then
calculated. For the calculation of
linkage disequilibrium, there are a
lot of software available, the most
commonly used are plink and
haploview, of course, there are
many R packages that can be
calculated.
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Genome-wide average LD decay

Linkage DisequilibriumDecay
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LD matrix for polymorphic sites.
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GWAS basic analysis of the content
and interpretation of the results



Population

GWAS analysis steps l

a = N
Phenotyping and
collection of
| genetic material

!

Genotyping

7

Dataset

Quality Control _
preparation

\ /

Test for
association

|

Replication




Group material selection

1.Group size i

2.group diversity

3.Try to choose the core collection e

that maximizes the diversity of Statistical power of detection in GWAS for variants that explain 1-
30% of the variation at type | error =0.05

germplasm resources



Genotype data quality control

1) Filtering according to the percentage of classification, generally remove the
deletion rate of more than 20%, if the amount of data is relatively large, you can
relax to 50%.

 2) Filter by allele frequency to remove the second allele with a frequency less
than 5%. If the amount of data is relatively large, it can be relaxed to 1%.

 3) Filtering of multiple alleles According to the needs of the software, some
software does not support multiple alleles.

* 4) Hardy Weinberg balance filtering in human case/control will generally Filters
that do not meet the equilibrium of Hardy Weinberg are filtered out, animals and
plants do not use this filter.

* 5) Removal of extreme phenotypes



LD attenuation analysis

* Minimum saturation marker = genomic size / LD attenuation distance

* The higher the density, the better: the probability of detecting functional
sites increases; the sites in the same block verify each other.

* The range of upstream and downstream of the candidate gene can be
determined according to the LD attenuation distance.
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Nature Biotechnology 30, 105-111 (2012) doi:10.1038/nbt.2050



Assessment of group structure and kinship

Population structure

(e)

Familial relatedness

Current Opinion in Biotechnology

Curr Opin Biotechnol. 2006 Apr;17(2):155-60.

1.Group structure and kinship are the
two main factors leading to false
positives in association analysis

2.Evaluate group structure and kinship to
determine the statistical model used and obtain
the corresponding matrix

A--ideal group

B--multiple groups

C--has a group structure group

D--a group with a group structure and a
close relationship

E-- a group with a high group structure and
a high degree of affinity



Group structure - Q matrix

* STRUCTURE
— (Pritchard et al, 2000, Genetics, 155: 945-939)

—  http://pritch.bsd.uchicago.edw/software.html

—  Structure¥VHzE/T ALK , FBREEERE R

*  Admixture
— ( David H. Alexander, 2009, Genome Res, 1655-1664)

—  http://www.geneti Gﬂ] icla.edu/software/admixture/

—  AdmixtureBUFEHITERRE , EEZRXETFTNA

* fastSTRUCTURE
— (Anil Raj et al, 2014, Genetics, 197:573-589)

— hiip://rajanil.github.io/fastStructure/




How to judge the number of subgroups of a group
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Another way to calculate the population
structure - PCA

- R

— http://cran.r-project.org

e  Cluster

— http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

- EIGENSOFT ¥
— http://genepath.med.harvard.edu/~reich/Software.htm



The impact of group structure on GWAS
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Inter-individual kinship - K matrix

« SPAGeDi
— http://ebe.ulb.ac.be/ebe/Software.html

+ EMMA

— http://mouse.cs.ucla.edu/emma/index.html

* TASSEL

— http://www.maizegenetics.net/bioinformatics




Phenotypic detection

1.Accurate phenotypic testing is a key analysis of
correlation analysis

2.Gwas is suitable for both discrete quantitative traits
and quality traits

3.When multiple indicators of complex traits can be
measured simultaneously, the principal component
factors representing the original phenotypic data
variation are found as phenotypic data for association
analysis.
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Screening of GWAS association thresholds

Bonferroni correction
P=0.05 (0.01)/N
N: number of detected markers

tean . —RGWASH 750000 SNP |
A P=0.01/50000=2¢-7



Group structure source

> WIBNEE | iSRRI o A F

» Humans originally spread across the world many thousand
years ago.

» Migration and genetic drift led to genetic diversity between
isolated groups.




The impact of group structure on GWAS -

false positives

Case/control association
analysis

1.Compare case/control allele
frequency differences

2.At gwas, the proportion of sample
cases/controls in each group is out of
proportion, resulting in markers associated with

group stratification being associated with a
large number of false positives.

®e o
® o9 o '@
: e e,

® ®p0

rCase, Z¥LControl; L fPopl, WfiPop2

Quantitative trait

association analysis
1.Verify the correlation between phenotype and
genotype

2.Phenotype: The phenotype between
subgroups varies from group to group.

3.Genotype: There are population-specific loci that are
associated with phenotypes, resulting in a large
number of false positives.
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Population structure assessment
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Building a phylogenetic tree Group structure analysis PCA analysis



Introduction to commonly used GWAS
statistical methods and models

*HO (null hypothesis): The null hypothesis, which is a pre-established hypothesis when
performing statistical tests, generally a hypothesis that wishes to prove its error. HO in
GWAS is zero with a regression coefficient of the marker, and SNP has no effect on the
phenotype.

*Alternative hypothesis (H1, also called Alternative Hypothesis): A hypothesis against the
null hypothesis that H1 in GWAS means that the regression coefficient of the marker is not
zero, and the SNP is related to the phenotype.

Ho: [Phenotype] L[SNP] H,: [Phenotype]~[SNP]

...ACATGCCGACATTTCATAAGCC... o c 180 c 180
...ACATGCCGACATTTCATAGGCC... o - 2 17 8 - X i
...ACATGCCGACATTTCATAAGCC... '\ = e 170 = +e ‘
...ACATGCCGACATTTCATAGGCC... o c y=H - c Y=H B -
...ACATGCCGACATTTCATAGGCC... = B c e o c pr—— -
...ACATGCCGACATTTCATAAGCC... = 3 c = & C W i &
...ACATGCCGACATTTCATAAGCC... 30 o , C 2 o , C 2 / = o
...ACATGTCGACATTTCATAGGCC... 120 3 5 T ® = 3 : © ° } 4 = 3
...ACATGTCGACATTTCATAAGCC... 120 2 T _3z _. ¢ 8 g .3 = i
...ACATGTCGACATTTCATAGGCC... 4 = T 38 - yeu = 5 T B¢ . S ™ o
...ACATGTCGACATTTCATAAGCC... ' T T &g o T &a s 2 P - S
...ACATGTCGACATTTCATAGGCC... 110 T b ) 2/ sia
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...ACATGTCGACATTTCATAAGCC... 100 T v T C SNP s08 T T C SNP oo
(a) (b) (c)

http://dx.doi.org/10.1101/092106



Two types of errors and statistical power

Type | error: rejects the true HO, which is a false positive, and the probability a is
the level of significance;

Type Il error: Accepts the wrong HO, which is a false negative with a probability
of B;

Power: The probability of rejecting the error HO 1-B

Positive False positive
(reject Hy) Typel: a Lewe s
Negative . False negative
(Accept Hy) Specificity=1-a Type TI: B

Sum 100% 100%



The simplest model - analysis of variance
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ogistic regression: General Linear Analysis
Model (GI.M)

Phenotype on individuals -

/

Population
structure

Voo !

Y = SNP + Q (or PCs)
(fixed effect) (fixed effect)

General Linear Model
(GLM) FROM ZHANG’S PPT 201607 WUHAN

M



ogistic regression: Mixed linear model
MLM

Phenotype
Population Unequal
structure relatedness
\ 4 \Ir l \ 4

Y =SNP + Q (or PCs) + Kinship + e

(fixed effect) (fixed effect) (random effect)
General Linear Model (GLM)

Mixed Linear Model (MLM)  FROM ZHANG’S PPT 201607 WUHAN

Yu J et al: A unified mixed-model method for association mapping that
accounts for multiple levels of relatedness. Nat Genet 2006, 38(2):203-208.



CMLM: Compressed mixed linear model

y = SNP + Q (or PCs) + Kinship e

YV = x4b; + X,b,+Xx3bs+x,b, + ZU+ e
N

Group

Zhang

Zhang Z et al: Mixed linear model approach adapted for genome-wide
association studies. Nat Genet 2010, 42(4):355-360.

FROM ZHANG’S PPT 201607 WUHAN




Comparison of different models

Method shift Human Dog  Maize Arab:dopsn
GIMtoMLM  3.6%  13.8% 10.1%  29.6%
kMt 40%  142% T6%  2.5%
compression
Compression o ¢ yor  133%  2.9% 2.6%

group kinship

The increase was calculated as the maximum difference
between two methods across different magnitude of QTN
effect in each species. For example, for a QTN (quantitative
trait nucleotide) contributing 0.3% of total phenotypic
variation, the statistical power was increased from 67.8% by
using general linear model (GLM) to 71.4% by using mixed
linear model (MLM) with a increase of 71.4% -67.8%= 3.6%.

0.0 (oe a2 (e ] ol
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() ] | ¥, 33 4 (i} |
(O0%) (0.2 1%) 0. 8%) (1 BOW) |3.259%) (4.99%)

] ah R 8 ) !

(0% (1.00%) |7.00) |14.9%) (20.2%) [32.1%)

Li M, Liu X, Bradbury P, Yu I, Zhang YM, Todhunter RJ, Buckler ES, Zhang Z: Enrichment of statistical power for genome-

wide association studies. BMC Biol 2014, 12:73.



Comparison of different models

MLM

‘1. Structure (BLUE)

GLM

L J

Li M, Liu X, Bradbury P, Yu J, Zhang YM, Todhunter RJ, Buckler ES, Zhang Z: Enrichment of statistical power for genome-
wide association studies. BMC Biol 2014, 12:73.



Other association analysis models

EMMAX

— Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E: Variance component model to
account for sample structure in genome-wide association studies. Nat Genet 2010, 42(4):348-354.

FaST-LMM

—  Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D: FaST linear mixed models for genome-wide
association studies. Nat Methods 2011, 8(10):833-835.

ZURIEBSVARE (MLMM, FarmCPU )

—  Segura V, Vilhjalmsson BJ, Platt A, Korte A, Seren U, Long Q, Nordborg M: An efficient multi-locus mixed-model
approach for genome-wide association studies in structured populations. Nat Genet 2012, 44(7):825-830.

— Liu X, Huang M, Fan B, Buckler ES, Zhang Z: Iterative Usage of Fixed and Random Effect Models for Powerful
and Efficient Genome-Wide Association Studies. PLoS Genet 2016, 12(2):¢1005767.
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Judging the rationality of the model - QQplot

5 S Good mode: early stage consistent, late rise
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RESULT-DATA

GLM&: 5

Trait Marke: Chr Pos er_F p arker_Rsq] add_F | add_p | dom_F | dom_p | marker_dfl marker_MS| error_df | error_MS | model_df | model_M:
dpoll PzB008 | 11 157104 0.335] 0715 0.004 0348 0556 0324 0.57 2 7.321 251 21834 4| 669258|a
dpoll Pza012. 1 1947984 59890 0015 0014 5989 0015 o a) 1 130917 247 2186 3| 939.278
dpoll PZA036.] [1 2914066 0.444] 0.506 0001 0444] 0506 ) o 1 9.747 254 21956 3| 920461
dpoll PzA036. ] |1 2914171 1943 0.145 0.0 2967 0086 0921 0.338 2 42 349| 256/ 21791 4| 738172
dpoll PZA036. ] [1 2915078 0.18] 0672 q 0.18] 0672 o o 1 3989 242| 22147 3] 887.817
dpoll  [PZA036.| |1 2915242 1175]  o2s]] 0003 1175 o028) o O 1 24768| 240 21087 3] 952777
dpoll PzA002.] |1 2973508 1.317 0.27 0.007 1.364] 0.244 1.268 0.261 2 28.604 237, 21721 4 684.325
dpoll PZA029. § |1 3205252 298] 0053 0014 1671 0197 4267 0.04 2 50845 243 2008 4| 699438
dpoll PzA029.f 1 3205262 0.338] 0562 0.00 0338 0562 o o 1 6.54 235  19.347| 3| 864.986
dpoll PZA005.] [1 3206090 0.708] 0.493 0004 1415 0235  0.008 0.93 2 15.599 253] 22019 4| 723371+
‘ [ 1 | ! | l ’
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MLM&E 3

Trait Marker Chr Pos F p |_¢ add_F | add_p |dom_effeci dom_F | dom_p | errordf MarkerR2 § Genetic Var| Residual Var |-2LnLikelih
dpoll None 0 | o 0 o c o g g 257 8.068| 14.585 1,477.183|~
dpoll PzB008. |1 157104 2| 1108/ 0333 | -0.022] 0.004 0949 -3627| 2168 0142  2530| 0.00% 8.068| 14585 1.477.183
dpoll PZA0127 §|1 1947984 1| 4339 0.038| o o c = o Q 248.0/ 0013 8.068| 14585  1.477.183|
dpoll PzA0361 §11 2914066 11 013 0.718] o 0 0 o o &) 255.0| [ 8.068| 14585  1.477.183|
dpoll PzA0361 )11 2014171 2| 3.44p 0.033 0.63] 3.066 0081 -5839]  4.043 0045 2580 0024 8.068] 14585  1.477.183|
dpoll PZA0361 41 2915078 1| 004§ 0834 o o o o a o] 2430 [ | 8.068| 14585  1.477.183|
dpoll PZA0361 /1 2915242 1| 0.78p| 0.375 g g 0 &) g a] 241.0 0.003 8.068| 14585 1.477.183|
dpoll PZA0025 §i1 2973508 2| o070k 0495/ | -0286/ 0751 0.387 3.072 0616 0433  2420| 0.004 8.068/ 14585  1.477.183]
dpoll PZA0296 4|1 3205252 2| 1.74F| 04177 0.439 0805 0.37 3.662 218 0.141 247.0| 0.01 8.068 14585  1.477.183|
dpoll PZA0296 |1 3205262 1| 0.02p| 0873 o o a ol 2300 8068 14585  1.477.183|
dpoll PZA0059 §1 3206090 2| 031p 0733 037 0623 0431 -0.242 0.004 0951  258.0 0.004 8.068] 14585  1.477.183]
dpoll PzA0212 411 3706018 1 1.0pl 0307 g o o o g a] 255.0! o.ﬂ s.osﬂ 14 585 14771831
[l L ]D[
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| prnt || exportcsv) || Export(ran)
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Manhattan map

Simple model for grain width
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GWAS fine positioning

 The SNP is only a marker. The results of GWAS are statistically
significant but not necessarily biologically significant. Therefore, after
finding some sites that have passed the correction line, it is necessary
to see which regions the sites fall in and extract the genes from these
regions. Further filtering to determine candidate genes, where the
region is determined, is mainly two methods: 1. A certain interval of
up and down 0.2. The LD Block in which it is located. Filtering genes is
to see if functional annotations and other things are related to your
traits. If they are irrelevant, they can be filtered out.
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