

Codeml

--mounted on **PAML**(Phylogenetic Analysis by Maximum Likelihood) Developer: Ziheng Yang Reporter: Longlong Sang

> The Lab of Molecular Systematics and Ecology http://www.lmse.org/

Content

- Conception
- Input files example
- Objective
- Model interpretation
- Summary

Conception -> Synonymous and Nonsynonymous substitution

- Synonymous substitution
 - Nucleotide mutation that not alter amino acids(AA) sequence.
- Nonsynonymous substitution
 - Nucleotide mutation that alter amino acids sequence.

CCT--->Pro

Omega ω

- $\omega = dN/dS$
- **Definition** : The ratio between Nonsynonymous substitution change rate and Synonymous substitution change rate. Measures selective pressure at the protein level.

• Indicative meaning :

- $\omega > 1$ -> positive selection
- $\omega = 1 \rightarrow \text{neural selection}$
- $\omega < 1$ -> negative selection

• Example :

- MHC ω have a higher value, structural protein gene have a smaller value

Input files->Tree files

- Un rooted tree is NEEDED
- (((1,2),3),4)---->((1,2),3,4)

Input files->Configuration file(.ctl)

- seqfile = lysozymeSmall.nuc * sequence data file name
- treefile = lysozymeSmall.trees * tree structure file name
- outfile = result.txt * main result file name
- seqtype = 1
- CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table
- **model** = 2, choose your model for branch.
- **NSsites** = 0, choose your model for sites/codon.
- fix_omega=0/1, 0 meaning ω value estimate in program, 1 meaning use the value you assign to parameter "omega".
- omega=you setting
- Other parameter suggest using default.

Functionality and Determine your objective

Note : ps meaning Positive selection

Running a Codeml

- Command Line
- Graphics User Interface
- Multiple or Batch running
- Simplify way:

Four files in same folder:

codeml.exe codeml.ctl xx.nuc or xx.txt xx.trees

Introduction to Model and realistic usage

Basic Model

- Assumption : One ω =dN/dS ratio(omega) for each branches, usually as a null hypothesis for Likelihood ratio tests.
- **Setting** :Model=0 Nssites=0
- Advice: As a Null hypothesis; and omega is almost always

smaller than 1 when you want use Basic as a detection of positive

selection for sequence or gene.

Branch Model Type

Branch Model->Introduction

• Assumption : The value ω is same value or vary between different branches.

Three Model for Branch model

- A. Model=0 : Basic Model Setting : model=0 NSsites=0
- B. Model=1 : All of branches have their unique ω value Setting : model=1 NSsites=0
- C. Model=2 : By label sign in your tree file that you have some clade have their own omega value different with the rest branch
 Setting : model=2 NSsites=0

Branch Model->How to label in your tree file

A clade

A branch

Background branch

- Label sign : # for clade, \$ for branch
- No labeled :
 - ((Hsa_Human ,Hla_gibbon),(Mouse,Chimpanzee),Outgroup);
- Labeled :
 - ((Hsa Human ,Hla gibbon)#1,(Mouse,Chimpanzee),Outgroup);
 - ((Hsa Human ,Hla qibbon)#1,(Mouse,Chimpanzee)#2,Outgroup),

Branch Model->Three Applications

- Application 1- Testify of significant difference between branch
 - Null hypothesis : Basic Model Alternative hypothesis: model=0, Nssites=0
- Application 2- Detection of significantly difference between foreground and background branch
 - Null hypothesis : Basic Model Alternative hypothesis : model=2, Nssites=0
 - Note : # or \$ label is needed.
- Application 3- Detection of positive selection in foreground branch(you specified)
 - Null hypothesis : model=2 NSsites=0 Alternative hypothesis : model=2, Nssites=0 fix_omega=1 setting omega > 1
 - Note : The omega set >1 meaning set the **last** ω >1, which is meaning only last class of branch is under positive selection for this model comparison.

Branch Model->Function of Application 3

Branch Model->Analysis for three Applications

• Test \rightarrow Get Ln(likelihood) from running-out result

Example: Null hypothesis result: InL(ntime: 7 np: 9): -31.366310 +0.000000 Alternative hypothesis result: InL(ntime: 7 np: 10): -31.366306 +0.000000

• Likelihood ratio tests(LRTs)

Statistics value: $q=2(\ln L1 - \ln L2) \rightarrow fit$ to Chi-Square Distribution \rightarrow Get p value Method: R package \rightarrow function : pchisq(statistic value, df, lower.tail=FALSE) , df=np1- np0 \rightarrow p-value= 0.9984042

Meaning : In a situation , rejecting Null hypothesis is wrong with possibility of p=0.9984042

Sites Model Type

Sites Model->Introduction

- Assumption : Allowing the DN/DS ratio to vary among sites (among codons or amino acids in the protein)
- **Setting**: Model=0 NSsites=number(0..13,22)

Tips: NSsites = 0 1 2 3 4 meaning you can run several model in one running.

• Function : Fitting the Evolution Rate of Different sequence position with Different Models then to prove the positive selection in sites.

Sites Model->Important model and model information

- Nssites=0,one ω : one-ratio model, all of position have identical ω ratio
- NSsites=1, neutral : $\omega <=1$
- NSsites=2, selection : some position : $\omega > 1 \omega < = 1$
- NSsites=3, discrete : Discrete Distribution, three ω : $\omega_{0,} \omega_{1,} \omega_{2}$
- NSsites=7, beta : Distribution of ω along position is beta distribution
- NSsites=8, beta& ω : based on model 7, but some position ω >1

Sites Model->Important model information

Table 2. Parameters in the site models

Model	NSsites	#p	Parameters	Note	
M0 (one ratio)	0	1	ω	(Goldman and Yang 1994;	
				Vang and Nielsen 1998)	
M1a (neutral)	1	2	$p_0 (p_1 = 1 - p_0),$	(Nielsen and Yang 1998;	Free parameter or
		_	$\omega_0 < 1, \ \omega_1 = 1$	Yang et al. 2005)	
M2a (selection)	2	4	$p_0, p_1 (p_2 = 1 - p_0 - p_1),$	(Nielsen and Yang 1998;	degree of freedom
			$\omega_0 < 1, \ \omega_1 = 1, \ \omega_2 > 1$	Yang et al. 2005)	
M2a_ref	22	4	$p_0, p_1 (p_2 = 1 - p_0 - p_1),$	$\omega_2 > 0$, for use as null for	
			$\omega_0 < 1, \ \omega_1 = 1, \ \omega_2 > 0$	testing the clade model	
				(Weadick and Chang 2012)	
M3 (discrete)	3	5	$p_0, p_1 (p_2 = 1 - p_0 - p_1)$	(Yang et al. 2000b)	
(-	-	$\omega_0, \omega_1, \omega_2$	(1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
M7 (beta)	7	2	p, q	(Yang et al. 2000b)	
M8 (beta&ω)	8	4	$p_0 (p_1 = 1 - p_0),$	(Yang et al. 2000b)	
			$p, q, \omega_s > 1$		_

NOTE.— #p is the number of free parameters in the ω distribution. Parameters in parentheses are not free and should not be counted: for example, in M1a, p_1 is not a free parameter as $p_1 = 1 - p_0$. In both likelihood ratio tests comparing M1a against M2a and M7 against M8, df = 2. The site models are specified using NSsites.

(Yang PAMI software description file)

Sites Model->Detection of identical of sites

- Null hypothesis : All branch or sites ω are identical Model=0 and NSsites = 0
- Alternative hypothesis : Distribution of $\boldsymbol{\omega}$ along sites are Discrete Distribution

Model=0 Nssites = 3

• Likelihood Ratio Tests(LRTs) :

Ln(likelihood value) get from result file

Like LRTS in comparison between Basic Model and Branch Model above.

Sites Model->Prove of existence of Sites under positive selection

Sites Model->Prove of existence of Sites under positive selection

- Suggest by Yang: two model comparison use for detection.
- A. Null hypothesis : Model=0 NSsites=1Alternative hypothesis : Model=0 NSsites=2
- B. Null hypothesis : Model=0 NSsites=7Alternative hypothesis : Model=0 NSsites=8
- Likelihood Ratio Tests(LRTs) : Same with above procedure.

Tips : Suggesting by Yang, The M1-M2 comparison appears to be more robust (or less powerful) than the M7- M8 comparson.

Branch-Sites Model Type

Branch-Sites Model->Introduction

- Assumption : Allowing ω to vary among sites in protein and across branches on the tree.
- Function : Aiming to detect positive selection affecting a few sites only exist in particular lineages/foreground branches.
- **Key point** : Branch-Sites Model is combination of branch model and sites model, branch label is needed.

Branch-Sites Model->Demonstration

Branch-Sites Model->Model description

- Alternative hypothesis : Model A
 - Setting : Model=2 NSsites=2 fix_omega=0
- Null hypothesis Model:
 - Setting: Model=2 NSsites=2 fix_omga=1 omega=1
- Detail of Model A

				$\omega_2 > -$
Site class	Proportion	Background	Foreground	
0	p_0	$0 < \omega_0 < 1$	$0 < \omega_0 < 1$	
1	p_1	$\omega_1 = 1$	$\omega_1 = 1$	
2a	$(1-p_0-p_1) p_0/(p_0+p_1)$	$0 < \omega_0 < 1$	$\omega_2 \geq 1$	
2b	$(1-p_0-p_1) p_1/(p_0+p_1)$	$\omega_1 = 1$	$\omega_2 \geq 1$	

 Table 3. Parameters in branch-site model A (np = 4)

(Yang PAMI software description file)

By setting omega=1 in Null hypothesis model. In fact assign $\omega_2 = 1$ compare with Model A $\omega_2 > = 1$.

Branch-Sites Model-> Detection

- **Application** : Detection for positive selection sites in specific lineage.
- Null Hypothesis :
 - Setting: Model=2 NSsites=2 fix_omga=1 omega=1
- Alternative hypothesis : use Model A
 - Setting : Model=2 NSsites=2 fix_omega=0
- Modified Likelihood Ratio Tests(Modified LRTs):
 - Assuming you calculate out p-value=0.22, the real-p-value=p-value/2=0.11, use real-p-value as test.

Functionality and Determine your objective

Note : ps meaning Positive selection

Summary

- Functionality of codeml is to prove existence of positive selection.
- Know your purpose, choose suitable comparison of model
- Common hypothesis
 - Null hypothesis : Making sure no $\omega > 1$
 - Alternative hypothesis : Keeping a portion of omega distribution are larger than 1.
- Pay attention to other parameter when needed(such as "clock")
- More details and comprehensive understanding need pay your attention to description file.

Thanks for your attention