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What are artificial neural networks?
Anders Krogh

Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein 
secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for?

When it comes to tasks other than number 
crunching, the human brain possesses 

many advantages over a digital computer. We 
can quickly recognize a face, even when seen 
from the side in bad lighting in a room full 
of other objects. We can easily understand 
speech, even that of an unknown person 
in a noisy room. Despite years of focused 
research, computers are far from perform-
ing at this level. The brain is also remark-
ably robust; it does not stop working just 
because a few cells die. Compare this to a 
computer, which will not normally survive 
any degradation of the CPU (central process-
ing unit). But perhaps the most fascinating 
aspect of the brain is that it can learn. No 
programming is necessary; we do not need 
a software upgrade, just because we want to 
learn to ride a bicycle.

The computations of the brain are done 
by a highly interconnected network of neu-
rons, which communicate by sending electric 
pulses through the neural wiring consisting 
of axons, synapses and dendrites. In 1943, 
McCulloch and Pitts modeled a neuron as 
a switch that receives input from other neu-
rons and, depending on the total weighted 
input, is either activated or remains inactive. 
The weight, by which an input from another 
cell is multiplied, corresponds to the strength 
of a synapse—the neural contacts between 
nerve cells. These weights can be both posi-
tive (excitatory) and negative (inhibitory). In 
the 1960s, it was shown that networks of such 
model neurons have properties similar to the 
brain: they can perform sophisticated pat-

tern recognition, and they can function even 
if some of the neurons are destroyed. The 
demonstration, in particular by Rosenblatt, 
that simple networks of such model neu-
rons called ‘perceptrons’ could learn from 
examples stimulated interest in the field, 
but after Minsky and Papert1 showed that 
simple perceptrons could solve only the very 
limited class of linearly separable problems 
(see below), activity in the field diminished. 
Nonetheless, the error back-propagation 
method2, which can make fairly complex net-
works of simple neurons learn from exam-
ples, showed that these networks could solve 
problems that were not linearly separable. 
NETtalk, an application of an artificial neu-
ral network for machine reading of text, was 
one of the first widely known applications3, 
and many followed soon after. In the field of 
biology, the exact same type of network as 
in NETtalk was also applied to prediction of 
protein secondary structure4; in fact, some 
of the best predictors still use essentially the 
same method. Another big wave of interest 
in artificial neural networks started, and led 
to a fair deal of hype about magical learning 
and thinking machines. Some of the impor-
tant early works are gathered in ref. 5.

Artificial neural networks are inspired 
by the early models of sensory processing 
by the brain. An artificial neural network 
can be created by simulating a network of 
model neurons in a computer. By applying 
algorithms that mimic the processes of real 
neurons, we can make the network ‘learn’ to 
solve many types of problems. A model neu-
ron is referred to as a threshold unit and its 
function is illustrated in Figure 1a. It receives 
input from a number of other units or exter-
nal sources, weighs each input and adds them 
up. If the total input is above a threshold, 
the output of the unit is one; otherwise it is 
zero. Therefore, the output changes from 0 

to 1 when the total weighted sum of inputs 
is equal to the threshold. The points in input 
space satisfying this condition define a so-
called hyperplane. In two dimensions, a 
hyperplane is a line, whereas in three dimen-
sions, it is a normal plane. Points on one side 
of the hyperplane are classified as 0 and those 
on the other side as 1. It means that a classifi-
cation problem can be solved by a threshold 
unit if the two classes can be separated by a 
hyperplane. Such problems, as illustrated in 
three dimensions in Figure 1b, are said to be 
linearly separable.

Learning
If the classification problem is separable, 
we still need a way to set the weights and 
the threshold, such that the threshold unit 
correctly solves the classification problem. 
This can be done in an iterative manner by 
presenting examples with known classifica-
tions, one after another. This process is called 
learning or training, because it resembles the 
process we go through when learning some-
thing. Simulation of learning by a computer 
involves making small changes in the weights 
and the threshold each time a new example 
is presented in such a way that the classifica-
tion is improved. The training can be imple-
mented by various different algorithms, one 
of which will be outlined below.

During training, the hyperplane moves 
around until it finds its correct position in 
space, after which it will not change so much. 
This is nicely illustrated in two dimensions by 
the program Neural Java (http://lcn.epfl.ch/
tutorial/english/index.html); follow the link 
“Adaline, Perceptron and Backpropagation,” 
use red and blue dots to represent two classes 
and select “play.”

Let us consider an example problem, for 
which an artificial neural network is readily 
applicable. Of two classes of cancer, only one 
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responds to a certain treatment. As there is 
no simple biomarker to discriminate the two, 
you decide to try to use gene expression mea-
surements of tumor samples to classify them. 
Assume you measure gene expression values 
for 20 different genes in 50 tumors of class 0 
(nonresponsive) and 50 of class 1 (respon-
sive). On the basis of these data, you train a 
threshold unit that takes an array of 20 gene 
expression values as input and gives 0 or 1 as 
output for the two classes, respectively. If the 
data are linearly separable, the threshold unit 
will classify the training data correctly.

But many classification problems are not 
linearly separable. We can separate the classes 
in such nonlinear problems by introducing 
more hyperplanes; that is, by introducing 
more than one threshold unit. This is usu-
ally done by adding an extra (hidden) layer 
of threshold units each of which does a 

partial classification of the input and sends 
its output to a final layer, which assembles 
the partial classifications to the final classi-
fication (Fig. 1c). Such a network is called 
a multi-layer perceptron or a feed-forward 
network. Feed-forward neural networks can 
also be used for regression problems, which 
require continuous outputs, as opposed to 
binary outputs (0 and 1). By replacing the 
step function with a continuous function, 
the neural network outputs a real number. 
Often a ‘sigmoid’ function—a soft version of 
the threshold function—is used (Fig. 1a). The 
sigmoid function can also be used for classi-
fication problems by interpreting an output 
below 0.5 as class 0 and an output above 0.5 
as class 1; often it also makes sense to inter-
pret the output as the probability of class 1.

In the above example, one could, for 
instance, have a situation where class 1 is 

characterized by either a highly expressed 
gene 1 and a silent gene 2 or a silent gene 1 
and a highly expressed gene 2; if neither or 
both of the genes are expressed, it is a class 0 
tumor. This corresponds to the ‘exclusive or’ 
function from logic, and it is the canonical 
example of a nonlinearly separable function 
(Fig. 1b). In this case, it would be necessary 
to use a multi-layer network to classify the 
tumors.

Back-propagation
The previously mentioned back-propagation 
learning algorithm works for feed-forward 
networks with continuous output. Training 
starts by setting all the weights in the net-
work to small random numbers. Now, for 
each input example the network gives an 
output, which starts randomly. We measure 
the squared difference between this output 
and the desired output—the correct class 
or value. The sum of all these numbers over 
all training examples is called the total error 
of the network. If this number was zero, the 
network would be perfect, and the smaller 
the error, the better the network.

By choosing the weights that minimize the 
total error, one can obtain the neural net-
work that best solves the problem at hand. 
This is the same as linear regression, where 
the two parameters characterizing the line 
are chosen such that the sum of squared dif-
ferences between the line and the data points 
is minimal. This can be done analytically in 
linear regression, but there is no analytical 
solution in a feed-forward neural network 
with hidden units. In back-propagation, the 
weights and thresholds are changed each time 
an example is presented, such that the error 
gradually becomes smaller. This is repeated, 
often hundreds of times, until the error no 
longer changes. An illustration can be found 
at the Neural Java site above by following the 
link “Multi-layer Perceptron (with neuron 
outputs in {0;1}).”

In back-propagation, a numerical opti-
mization technique called gradient descent 
makes the math particularly simple; the form 
of the equations gave rise to the name of this 
method. There are some learning parameters 
(called learning rate and momentum) that 
need tuning when using back-propagation, 
and there are other problems to consider. 
For instance, gradient descent is not guar-
anteed to find the global minimum of the 
error, so the result of the training depends 
on the initial values of the weights. However, 
one problem overshadows the others: that of 
over-fitting.

Over-fitting occurs when the network has 
too many parameters to be learned from 
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Figure 1  Artificial neural networks. (a) Graphical representation of the McCulloch-Pitts model neuron 
or threshold unit. The threshold unit receives input from N other units or external sources, numbered 
from 1 to N. Input i is called xi and the associated weight is called wi. The total input to a unit is the 
weighted sum over all inputs,  wixi=w1x1+w2x2+. . .+wNxNΣi=1

N . If this were below a threshold t, the output 
of the unit would be 1 and 0 otherwise. Thus, the output can be expressed as  wixi – tΣi=1

Ng( ), where g 
is the step function, which is 0 when the argument is negative and 1 when the argument is nonnegative 
(the actual value at zero is unimportant; here, we chose 1). The so-called transfer function, g, can also 
be a continuous sigmoid as illustrated by the red curve. (b) Linear separability. In three dimensions, a 
threshold unit can classify points that can be separated by a plane. Each dot represents input values x1, 
x2 and x3 to a threshold unit. Green dots correspond to data points of class 0 and red dots to class 1. The 
green and red crosses illustrate the ‘exclusive or’ function—it is not possible to find a plane (or a line in 
the x1, x2 plane) that separates the green dots from the red dots. (c) Feed-forward network. The network 
shown takes seven inputs, has five units in the hidden layer and one output. It is said to be a two-layer 
network because the input layer does not perform any computations and is not counted. (d) Over-fitting. 
The eight points shown by plusses lie on a parabola (apart from a bit of ‘experimental’ noise). They were 
used to train three different neural networks. The networks all take an x value as input (one input) and 
are trained with a y value as desired output. As expected, a network with just one hidden unit (green) 
does not do a very good job. A network with 10 hidden units (blue) approximates the underlying function 
remarkably well. The last network with 20 hidden units (purple) over-fit the data; the training points are 
learned perfectly, but for some of the intermediate regions the network is overly creative.
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the number of examples available, that is, 
when a few points are fitted with a function 
with too many free parameters (Fig. 1d). 
Although this is true for any method for 
classification or regression, neural networks 
seem especially prone to overparameteriza-
tion. For instance, a network with 10 hid-
den units for solving our example problem 
would have 221 parameters: 20 weights and 
a threshold for the 10 hidden units and 10 
weights and a threshold for the output unit. 
This is too many parameters to be learned 
from 100 examples. A network that overfits 
the training data is unlikely to generalize well 
to inputs that are not in the training data. 
There are many ways to limit over-fitting 
(apart from simply making small networks), 
but the most common include averaging over 
several networks, regularization and using 
methods from Bayesian statistics6.

To estimate the generalization perfor-
mance of the neural network, one needs to 
test it on independent data, which have not 
been used to train the network. This is usu-
ally done by cross-validation, where the data 
set is split into, for example, ten sets of equal 
size. The network is then trained on nine sets 
and tested on the tenth, and this is repeated 
ten times, so all the sets are used for testing. 
This gives an estimate of the generalization 
ability of the network; that is, its ability to 
classify inputs that it was not trained on. To 

get an unbiased estimate, it is very impor-
tant that the individual sets do not contain 
examples that are very similar.

Extensions and applications
Both the simple perceptron with a single unit 
and the multi-layer network with multiple 
units can easily be generalized to prediction 
of more than two classes by just adding more 
output units. Any classification problem 
can be coded into a set of binary outputs. In 
the above example, we could, for instance, 
imagine that there are three different treat-
ments, and for a given tumor we may want 
to know which of the treatments it responds 
to. This could be solved using three output 
units—one for each treatment—which are 
connected to the same hidden units.

Neural networks have been applied to 
many interesting problems in different areas 
of science, medicine and engineering and in 
some cases, they provide state-of-the-art 
solutions. Neural networks have sometimes 
been used haphazardly for problems where 
simpler methods would probably have given 
better results, giving them a somewhat poor 
reputation among some researchers.

There are other types of neural net-
works than the ones described here, such as 
Boltzman machines, unsupervised networks 
and Kohonen nets. Support vector machines7 
are closely related to neural networks. To read 

more, I suggest the books by Chris Bishop6,8, 
a rather old book I coauthored9 or the book 
by Duda et al.10. There are numerous pro-
grams to use for making artificial neural 
networks trained with your own data. These 
include extensions or plug-ins to Excel, 
Matlab and R (http://www.r-project.org/) as 
well as code libraries and large commercial 
packages. The FANN library (http://leenis-
sen.dk/fann/) is recommended for serious 
applications. It is open source and written 
in the C programming language, but can be 
called from, for example, Perl and Python 
programs.
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