
NATURE BIOTECHNOLOGY VOLUME 26 NUMBER 2 FEBRUARY 2008 195

What are artificial neural networks?
Anders Krogh

Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein
secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for?

When it comes to tasks other than number
crunching, the human brain possesses

many advantages over a digital computer. We
can quickly recognize a face, even when seen
from the side in bad lighting in a room full
of other objects. We can easily understand
speech, even that of an unknown person
in a noisy room. Despite years of focused
research, computers are far from perform-
ing at this level. The brain is also remark-
ably robust; it does not stop working just
because a few cells die. Compare this to a
computer, which will not normally survive
any degradation of the CPU (central process-
ing unit). But perhaps the most fascinating
aspect of the brain is that it can learn. No
programming is necessary; we do not need
a software upgrade, just because we want to
learn to ride a bicycle.

The computations of the brain are done
by a highly interconnected network of neu-
rons, which communicate by sending electric
pulses through the neural wiring consisting
of axons, synapses and dendrites. In 1943,
McCulloch and Pitts modeled a neuron as
a switch that receives input from other neu-
rons and, depending on the total weighted
input, is either activated or remains inactive.
The weight, by which an input from another
cell is multiplied, corresponds to the strength
of a synapse—the neural contacts between
nerve cells. These weights can be both posi-
tive (excitatory) and negative (inhibitory). In
the 1960s, it was shown that networks of such
model neurons have properties similar to the
brain: they can perform sophisticated pat-

tern recognition, and they can function even
if some of the neurons are destroyed. The
demonstration, in particular by Rosenblatt,
that simple networks of such model neu-
rons called ‘perceptrons’ could learn from
examples stimulated interest in the field,
but after Minsky and Papert1 showed that
simple perceptrons could solve only the very
limited class of linearly separable problems
(see below), activity in the field diminished.
Nonetheless, the error back-propagation
method2, which can make fairly complex net-
works of simple neurons learn from exam-
ples, showed that these networks could solve
problems that were not linearly separable.
NETtalk, an application of an artificial neu-
ral network for machine reading of text, was
one of the first widely known applications3,
and many followed soon after. In the field of
biology, the exact same type of network as
in NETtalk was also applied to prediction of
protein secondary structure4; in fact, some
of the best predictors still use essentially the
same method. Another big wave of interest
in artificial neural networks started, and led
to a fair deal of hype about magical learning
and thinking machines. Some of the impor-
tant early works are gathered in ref. 5.

Artificial neural networks are inspired
by the early models of sensory processing
by the brain. An artificial neural network
can be created by simulating a network of
model neurons in a computer. By applying
algorithms that mimic the processes of real
neurons, we can make the network ‘learn’ to
solve many types of problems. A model neu-
ron is referred to as a threshold unit and its
function is illustrated in Figure 1a. It receives
input from a number of other units or exter-
nal sources, weighs each input and adds them
up. If the total input is above a threshold,
the output of the unit is one; otherwise it is
zero. Therefore, the output changes from 0

to 1 when the total weighted sum of inputs
is equal to the threshold. The points in input
space satisfying this condition define a so-
called hyperplane. In two dimensions, a
hyperplane is a line, whereas in three dimen-
sions, it is a normal plane. Points on one side
of the hyperplane are classified as 0 and those
on the other side as 1. It means that a classifi-
cation problem can be solved by a threshold
unit if the two classes can be separated by a
hyperplane. Such problems, as illustrated in
three dimensions in Figure 1b, are said to be
linearly separable.

Learning
If the classification problem is separable,
we still need a way to set the weights and
the threshold, such that the threshold unit
correctly solves the classification problem.
This can be done in an iterative manner by
presenting examples with known classifica-
tions, one after another. This process is called
learning or training, because it resembles the
process we go through when learning some-
thing. Simulation of learning by a computer
involves making small changes in the weights
and the threshold each time a new example
is presented in such a way that the classifica-
tion is improved. The training can be imple-
mented by various different algorithms, one
of which will be outlined below.

During training, the hyperplane moves
around until it finds its correct position in
space, after which it will not change so much.
This is nicely illustrated in two dimensions by
the program Neural Java (http://lcn.epfl.ch/
tutorial/english/index.html); follow the link
“Adaline, Perceptron and Backpropagation,”
use red and blue dots to represent two classes
and select “play.”

Let us consider an example problem, for
which an artificial neural network is readily
applicable. Of two classes of cancer, only one

Anders Krogh is at the Bioinformatics
Centre, Department of Biology and Biotech
Research and Innovation Centre, University
of Copenhagen, Ole Maaloes Vej 5, DK-2200
Copenhagen, Denmark.
e-mail: krogh@binf.ku.dk

P R I M E R
©

20
08

 N
at

ur
e

P
ub

lis
hi

ng
 G

ro
up

ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

http://lcn.epfl.ch/tutorial/english/index.html
http://lcn.epfl.ch/tutorial/english/index.html
mailto:krogh@binf.ku.dk

196 VOLUME 26 NUMBER 2 FEBRUARY 2008 NATURE BIOTECHNOLOGY

responds to a certain treatment. As there is
no simple biomarker to discriminate the two,
you decide to try to use gene expression mea-
surements of tumor samples to classify them.
Assume you measure gene expression values
for 20 different genes in 50 tumors of class 0
(nonresponsive) and 50 of class 1 (respon-
sive). On the basis of these data, you train a
threshold unit that takes an array of 20 gene
expression values as input and gives 0 or 1 as
output for the two classes, respectively. If the
data are linearly separable, the threshold unit
will classify the training data correctly.

But many classification problems are not
linearly separable. We can separate the classes
in such nonlinear problems by introducing
more hyperplanes; that is, by introducing
more than one threshold unit. This is usu-
ally done by adding an extra (hidden) layer
of threshold units each of which does a

partial classification of the input and sends
its output to a final layer, which assembles
the partial classifications to the final classi-
fication (Fig. 1c). Such a network is called
a multi-layer perceptron or a feed-forward
network. Feed-forward neural networks can
also be used for regression problems, which
require continuous outputs, as opposed to
binary outputs (0 and 1). By replacing the
step function with a continuous function,
the neural network outputs a real number.
Often a ‘sigmoid’ function—a soft version of
the threshold function—is used (Fig. 1a). The
sigmoid function can also be used for classi-
fication problems by interpreting an output
below 0.5 as class 0 and an output above 0.5
as class 1; often it also makes sense to inter-
pret the output as the probability of class 1.

In the above example, one could, for
instance, have a situation where class 1 is

characterized by either a highly expressed
gene 1 and a silent gene 2 or a silent gene 1
and a highly expressed gene 2; if neither or
both of the genes are expressed, it is a class 0
tumor. This corresponds to the ‘exclusive or’
function from logic, and it is the canonical
example of a nonlinearly separable function
(Fig. 1b). In this case, it would be necessary
to use a multi-layer network to classify the
tumors.

Back-propagation
The previously mentioned back-propagation
learning algorithm works for feed-forward
networks with continuous output. Training
starts by setting all the weights in the net-
work to small random numbers. Now, for
each input example the network gives an
output, which starts randomly. We measure
the squared difference between this output
and the desired output—the correct class
or value. The sum of all these numbers over
all training examples is called the total error
of the network. If this number was zero, the
network would be perfect, and the smaller
the error, the better the network.

By choosing the weights that minimize the
total error, one can obtain the neural net-
work that best solves the problem at hand.
This is the same as linear regression, where
the two parameters characterizing the line
are chosen such that the sum of squared dif-
ferences between the line and the data points
is minimal. This can be done analytically in
linear regression, but there is no analytical
solution in a feed-forward neural network
with hidden units. In back-propagation, the
weights and thresholds are changed each time
an example is presented, such that the error
gradually becomes smaller. This is repeated,
often hundreds of times, until the error no
longer changes. An illustration can be found
at the Neural Java site above by following the
link “Multi-layer Perceptron (with neuron
outputs in {0;1}).”

In back-propagation, a numerical opti-
mization technique called gradient descent
makes the math particularly simple; the form
of the equations gave rise to the name of this
method. There are some learning parameters
(called learning rate and momentum) that
need tuning when using back-propagation,
and there are other problems to consider.
For instance, gradient descent is not guar-
anteed to find the global minimum of the
error, so the result of the training depends
on the initial values of the weights. However,
one problem overshadows the others: that of
over-fitting.

Over-fitting occurs when the network has
too many parameters to be learned from

g

i = 1

1

t

N
WiXiΣ

W1

W2

W3

WN

X1

X2

X3

XN

Hidden
layer

Output

X1

X2

X3

X1 X2 X3 X4 X5 X6 X7
 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

a b

c d

X1

X2XX

XX3XX

×

×

×

×

Figure 1 Artificial neural networks. (a) Graphical representation of the McCulloch-Pitts model neuron
or threshold unit. The threshold unit receives input from N other units or external sources, numbered
from 1 to N. Input i is called xi and the associated weight is called wi. The total input to a unit is the
weighted sum over all inputs, wixi=w1x1+w2x2+. . .+wNxNΣi=1

N . If this were below a threshold t, the output
of the unit would be 1 and 0 otherwise. Thus, the output can be expressed as wixi – tΣi=1

Ng(), where g
is the step function, which is 0 when the argument is negative and 1 when the argument is nonnegative
(the actual value at zero is unimportant; here, we chose 1). The so-called transfer function, g, can also
be a continuous sigmoid as illustrated by the red curve. (b) Linear separability. In three dimensions, a
threshold unit can classify points that can be separated by a plane. Each dot represents input values x1,
x2 and x3 to a threshold unit. Green dots correspond to data points of class 0 and red dots to class 1. The
green and red crosses illustrate the ‘exclusive or’ function—it is not possible to find a plane (or a line in
the x1, x2 plane) that separates the green dots from the red dots. (c) Feed-forward network. The network
shown takes seven inputs, has five units in the hidden layer and one output. It is said to be a two-layer
network because the input layer does not perform any computations and is not counted. (d) Over-fitting.
The eight points shown by plusses lie on a parabola (apart from a bit of ‘experimental’ noise). They were
used to train three different neural networks. The networks all take an x value as input (one input) and
are trained with a y value as desired output. As expected, a network with just one hidden unit (green)
does not do a very good job. A network with 10 hidden units (blue) approximates the underlying function
remarkably well. The last network with 20 hidden units (purple) over-fit the data; the training points are
learned perfectly, but for some of the intermediate regions the network is overly creative.

PR IMER
©

20
08

 N
at

ur
e

P
ub

lis
hi

ng
 G

ro
up

ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

NATURE BIOTECHNOLOGY VOLUME 26 NUMBER 2 FEBRUARY 2008 197

the number of examples available, that is,
when a few points are fitted with a function
with too many free parameters (Fig. 1d).
Although this is true for any method for
classification or regression, neural networks
seem especially prone to overparameteriza-
tion. For instance, a network with 10 hid-
den units for solving our example problem
would have 221 parameters: 20 weights and
a threshold for the 10 hidden units and 10
weights and a threshold for the output unit.
This is too many parameters to be learned
from 100 examples. A network that overfits
the training data is unlikely to generalize well
to inputs that are not in the training data.
There are many ways to limit over-fitting
(apart from simply making small networks),
but the most common include averaging over
several networks, regularization and using
methods from Bayesian statistics6.

To estimate the generalization perfor-
mance of the neural network, one needs to
test it on independent data, which have not
been used to train the network. This is usu-
ally done by cross-validation, where the data
set is split into, for example, ten sets of equal
size. The network is then trained on nine sets
and tested on the tenth, and this is repeated
ten times, so all the sets are used for testing.
This gives an estimate of the generalization
ability of the network; that is, its ability to
classify inputs that it was not trained on. To

get an unbiased estimate, it is very impor-
tant that the individual sets do not contain
examples that are very similar.

Extensions and applications
Both the simple perceptron with a single unit
and the multi-layer network with multiple
units can easily be generalized to prediction
of more than two classes by just adding more
output units. Any classification problem
can be coded into a set of binary outputs. In
the above example, we could, for instance,
imagine that there are three different treat-
ments, and for a given tumor we may want
to know which of the treatments it responds
to. This could be solved using three output
units—one for each treatment—which are
connected to the same hidden units.

Neural networks have been applied to
many interesting problems in different areas
of science, medicine and engineering and in
some cases, they provide state-of-the-art
solutions. Neural networks have sometimes
been used haphazardly for problems where
simpler methods would probably have given
better results, giving them a somewhat poor
reputation among some researchers.

There are other types of neural net-
works than the ones described here, such as
Boltzman machines, unsupervised networks
and Kohonen nets. Support vector machines7
are closely related to neural networks. To read

more, I suggest the books by Chris Bishop6,8,
a rather old book I coauthored9 or the book
by Duda et al.10. There are numerous pro-
grams to use for making artificial neural
networks trained with your own data. These
include extensions or plug-ins to Excel,
Matlab and R (http://www.r-project.org/) as
well as code libraries and large commercial
packages. The FANN library (http://leenis-
sen.dk/fann/) is recommended for serious
applications. It is open source and written
in the C programming language, but can be
called from, for example, Perl and Python
programs.

1. Minsky, M.L. & Papert, S.A. Perceptrons (MIT Press,
Cambridge, 1969).

2. Rumelhart, D.E., Hinton, G.E. & Williams, R.J. Nature
323, 533–536 (1986).

3. Sejnowski, T.J. & Rosenberg, C.R. Complex Systems
1, 145–168 (1987).

4. Qian, N. & Sejnowski, T.J. J. Mol. Biol. 202, 865–884
(1988).

5. Anderson, J.A. & Rosenfeld, E. (eds). Neurocomputing:
Foundations of Research (MIT Press, Cambridge,
1988).

6. Bishop, C.M. Neural Networks for Pattern Recognition
(Oxford University Press, Oxford, 1995).

7. Noble, W.S. Nat. Biotechnol. 24, 1565–1567
(2006).

8. Bishop, C.M. Pattern Recognition and Machine
Learning (Springer, New York, 2006).

9. Hertz, J.A., Krogh, A. & Palmer, R. Introduction to
the Theory of Neural Computation (Addison-Wesley,
Redwood City, 1991).

10. Duda, R.O., Hart, P.E. & Stork, D.G. Pattern
Classification (Wiley Interscience, New York, 2000).

PR IMER
©

20
08

 N
at

ur
e

P
ub

lis
hi

ng
 G

ro
up

ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

http://www.r-project.org/
http://leenissen.dk/fann/
http://leenissen.dk/fann/

