
nature biotechnology volume 26 number 9 september 2008 1011

Carl Kingsford and Steven L. Salzberg are
in the Department of Computer Science,
Institute for Advanced Computer Studies and
Center for Bioinformatics and Computational
Biology, University of Maryland, College Park,
Maryland 20742, USA.
e-mail: carlk@cs.umd.edu or
salzberg@umiacs.umd.edu

What are decision trees?
Carl Kingsford & Steven L Salzberg

Decision trees have been applied to problems such as assigning protein function and predicting splice sites. How do
these classifiers work, what types of problems can they solve and what are their advantages over alternatives?

Many scientific problems entail labeling
data items with one of a given, finite set

of classes based on features of the data items.
For example, oncologists classify tumors as
different known cancer types using biopsies,
patient records and other assays. Decision
trees, such as C4.5 (ref. 1), CART2 and newer
variants, are classifiers that predict class labels
for data items. Decision trees are at their heart
a fairly simple type of classifier, and this is one
of their advantages.

Decision trees are constructed by analyzing
a set of training examples for which the class
labels are known. They are then applied to
classify previously unseen examples. If trained
on high-quality data, decision trees can make
very accurate predictions3.

Classifying with decision trees
A decision tree classifies data items (Fig. 1a)
by posing a series of questions about the fea-
tures associated with the items. Each question
is contained in a node, and every internal node
points to one child node for each possible
answer to its question. The questions thereby
form a hierarchy, encoded as a tree. In the sim-
plest form (Fig. 1b), we ask yes-or-no ques-
tions, and each internal node has a ‘yes’ child
and a ‘no’ child. An item is sorted into a class
by following the path from the topmost node,
the root, to a node without children, a leaf,
according to the answers that apply to the item
under consideration. An item is assigned to the
class that has been associated with the leaf it
reaches. In some variations, each leaf contains

a probability distribution over the classes that
estimates the conditional probability that an
item reaching the leaf belongs to a given class.
Nonetheless, estimation of unbiased prob-
abilities can be difficult4.

Questions in the tree can be arbitrarily com-
plicated, as long as the answers can be com-
puted efficiently. A question’s answers can be
values from a small set, such as {A,C,G,T}. In
this case, a node has one child for each possible

Expression
correlation > 0.9?

Shared
function?

Shared cellular
localization?

Genomic
distance < 5 kb

Yes

YesNo

No

Yes

No Yes

...
A-B

A-C

C-D

Expression
correlation

Shared
localization?

Shared
function?

Genomic
distance

Yes
Interact?

Yes

No

No

Yes

No

10 kb

1 kb

1 Mb

0.77

0.91

0.1

Yes

Yes

No

Gene
Pair

a

b

A–B

A–C

No

C–D

Figure 1 A hypothetical example of how a decision tree might predict protein-protein interactions.
(a) Each data item is a gene pair associated with a variety of features. Some features are real-valued
numbers (such as the chromosomal distance between the genes or the correlation coefficient of their
expression profiles under a set of conditions). Other features are categorical (such as whether the
proteins co-localize or are annotated with the same function). Only a few training examples are shown.
(b) A hypothetical decision tree in which each node contains a yes/no question asking about a single
feature of the data items. An example arrives at a leaf according to the answers to the questions.
Pie charts indicate the percentage of interactors (green) and noninteractors (red) from the training
examples that reach each leaf. New examples are predicted to interact if they reach a predominately
green leaf or to not interact if they reach a predominately red leaf. In practice, random forests have
been used to predict protein-protein interactions15.

p r i M e r
©

20
08

 N
at

ur
e

P
ub

lis
hi

ng
 G

ro
up

ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

http://www.cbcb.umd.edu/
http://www.cbcb.umd.edu/
mailto:carlk@cs.umd.edu
mailto:salzberg@umiacs.umd.edu

1012 volume 26 number 9 september 2008 nature biotechnology

more than once. In addition, when choosing
the question at each node, only a small, ran-
dom subset of the features is considered. With
these two modifications, each run may result
in a slightly different tree. The predictions of
the resulting ensemble of decision trees are
combined by taking the most common predic-
tion. Maintaining a collection of good hypoth-
eses, rather than committing to a single tree,
reduces the chance that a new example will be
misclassified by being assigned the wrong class
by many of the trees.

Boosting10 is a machine-learning method
used to combine multiple classifiers into a
stronger classifier by repeatedly reweighting
training examples to focus on the most prob-
lematic. In practice, boosting is often applied
to combine decision trees. Alternating decision
trees11 are a generalization of decision trees
that result from applying a variant of boosting
to combine weak classifiers based on decision
stumps, which are decision trees that consist of
a single question. In alternating decision trees,
the levels of the tree alternate between standard
question nodes and nodes that contain weights
and have an arbitrary number of children. In
contrast to standard decision trees, items can
take multiple paths and are assigned classes
based on the weights that the paths encounter.
Alternating decision trees can produce smaller
and more interpretable classifiers than those
obtained from applying boosting directly to
standard decision trees.

Applications to computational biology
Decision trees have found wide application
within computational biology and bioinfor-
matics because of their usefulness for aggre-
gating diverse types of data to make accurate
predictions. Here we mention only a few of the
many instances of their use.

Synthetic sick and lethal (SSL) genetic
interactions between genes A and B occur
when the organism exhibits poor growth (or
death) when both A and B are knocked out
but not when either A or B is disabled indi-
vidually. Wong et al.12 applied decision trees
to predict SSL interactions in Saccharomyces
cerevisiae using features as diverse as whether
the two proteins interact physically, localize to
the same place in the cell or have the function
recorded in a database. They were able to iden-
tify a high percentage of SSL interactions with
a low false-positive rate. In addition, analysis
of the computed trees hinted at several mecha-
nisms underlying SSL interactions.

Computational gene finders use a variety
of approaches to determine the correct exon-
intron structure of eukaryotic genes. Ab initio
gene finders use information inherent in the
sequence, whereas alignment-based methods

maximized when all the pi are equal. The Gini
index2, another common measure of impu-
rity, is computed by 1 – p

i Σi=1

m 2 .This is again
zero when the set E contains items from only
one class.

Given a measure of impurity I, we choose a
question that minimizes the weighted average
of the impurity of the resulting children nodes.
That is, if a question with k possible answers
divides E into subsets E1…,Ek, we choose a
question to minimize Σ j=1

k
(|E

j
|/|E|)I(E

j
). In

many cases, we can choose the best question
by enumerating all possibilities. If I is the
entropy function, then the difference between
the entropy of the distribution of the classes in
the parent node and this weighted average of
the children’s entropy is called the information
gain. The information gain, which is express-
ible via the Kullback-Leibler divergence6,
always has a nonnegative value.

We continue to select questions recursively
to split the training items into ever-smaller
subsets, resulting in a tree. A crucial aspect to
applying decision trees is limiting the com-
plexity of the learned trees so that they do
not overfit the training examples. One tech-
nique is to stop splitting when no question
increases the purity of the subsets more than
a small amount. Alternatively, we can choose
to build out the tree completely until no leaf
can be further subdivided. In this case, to
avoid overfitting the training data, we must
prune the tree by deleting nodes. This can be
done by collapsing internal nodes into leaves
if doing so reduces the classification error on
a held-out set of training examples1. Other
approaches, relying on ideas such as mini-
mum description length1,6,7, remove nodes in
an attempt to explicitly balance the complex-
ity of the tree with its fit to the training data.
Cross-validation on left-out training examples
should be used to ensure that the trees gener-
alize beyond the examples used to construct
them.

Ensembles of decision trees and other
variants
Although single decision trees can be excel-
lent classifiers, increased accuracy often can
be achieved by combining the results of a
collection of decision trees8–10. Ensembles of
decision trees are sometimes among the best
performing types of classifiers3. Random for-
ests and boosting are two strategies for com-
bining decision trees.

In the random forests8 approach, many dif-
ferent decision trees are grown by a random-
ized tree-building algorithm. The training
set is sampled with replacement to produce
a modified training set of equal size to the
original but with some training items included

value. In many instances, data items will have
real-valued features. To ask about these, the
tree uses yes/no questions of the form “is the
value > k?” for some threshold k, where only
values that occur in the data need to be tested
as possible thresholds. It is also possible to use
more complex questions, taking either linear
or logical combinations of many features at
once5.

Decision trees are sometimes more interpre-
table than other classifiers such as neural net-
works and support vector machines because
they combine simple questions about the data
in an understandable way. Approaches for
extracting decision rules from decision trees
have also been successful1. Unfortunately, small
changes in input data can sometimes lead to
large changes in the constructed tree. Decision
trees are flexible enough to handle items with
a mixture of real-valued and categorical fea-
tures, as well as items with some missing fea-
tures. They are expressive enough to model
many partitions of the data that are not as eas-
ily achieved with classifiers that rely on a single
decision boundary (such as logistic regression
or support vector machines). However, even
data that can be perfectly divided into classes
by a hyperplane may require a large decision
tree if only simple threshold tests are used.
Decision trees naturally support classification
problems with more than two classes and can
be modified to handle regression problems.
Finally, once constructed, they classify new
items quickly.

Constructing decision trees
Decision trees are grown by adding question
nodes incrementally, using labeled training
examples to guide the choice of questions1,2.
Ideally, a single, simple question would per-
fectly split the training examples into their
classes. If no question exists that gives such a
perfect separation, we choose a question that
separates the examples as cleanly as possible.

A good question will split a collection of
items with heterogeneous class labels into
subsets with nearly homogeneous labels,
stratifying the data so that there is little
variance in each stratum. Several measures
have been designed to evaluate the degree of
inhomogeneity, or impurity, in a set of items.
For decision trees, the two most common
measures are entropy and the Gini index.
Suppose we are trying to classify items into
m classes using a set of training items E. Let
pi (i = 1,…,m) be the fraction of the items of
E that belong to class i. The entropy of the
probability distribution (p

i
)

i=1
m gives a reason-

able measure of the impurity of the set E. The
entropy, – p

i
logp

iΣi=1

m , is lowest when a single
pi equals 1 and all others are 0, whereas it is

Pr ImEr
©

20
08

 N
at

ur
e

P
ub

lis
hi

ng
 G

ro
up

ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

nature biotechnology volume 26 number 9 september 2008 1013

Human Interface (eds. Gorayska, B. & mey, J.) 305–
317 (Elsevier Science, Amsterdam, The Netherlands,
1996).

10. Schapire, r.E. The boosting approach to machine
learning: an overview. in Nonlinear Estimation and
Classification (eds. Denison, D.D., Hansen, m.H.,
Holmes, C.C., mallick, B. & Yu, B.) 141–171 (Springer,
New York, 2003).

11. Freund, Y. & mason, L. The alternating decision
tree learning algorithm. in Proceedings of the 16th
International Conference on Machine Learning, (eds.
Bratko, I. & Džeroski, S.) 124–133 (morgan Kaufmann,
San Francisco, 1999).

12. Wong, S.L. et al. Combining biological networks to
predict genetic interactions. Proc. Natl. Acad. Sci.
USA 101, 15682–15687 (2004).

13. Allen, J.E., majoros, W.H., Pertea, m. & Salzberg, S.L.
JIGSAW, GeneZilla, and GlimmerHmm: puzzling out
the features of human genes in the ENCODE regions.
Genome Biol. 7 Suppl, S9 (2006).

14. middendorf, m., Kundaje, A., Wiggins, C., Freund, Y.
& Leslie, C. Predicting genetic regulatory response
using classification. Bioinformatics 20, i232–i240
(2004).

15. Chen, X.-W. & Liu, m. Prediction of protein-protein
interactions using random decision forest framework.
Bioinformatics 21, 4394–4400 (2005).

2. Breiman, L., Friedman, J., Olshen, r. & Stone, C.
Classification and Regression Trees (Wadsworth
International Group, Belmont, CA, USA, 1984).

3. Caruana, r. & Niculescu-mizil, A. An empirical
comparison of supervised learning algorithms. in
Machine Learning, Proceedings of the Twenty-Third
International Conference (eds. Cohen, W.W. & moore,
A.) 161–168 (ACm, New York, 2003).

4. Zadrozny, B. & Elkan, C. Obtaining calibrated probabil-
ity estimates from decision trees and naive Bayesian
classifiers. in Proceedings of the 18th International
Conference on Machine Learning, (eds. Brodley, C.E.
& Danyluk, A.P.) 609–616 (morgan Kaufmann, San
Francisco, 2001).

5. murthy, S.K., Kasif, S. & Salzberg, S. A system for
induction of oblique decision trees. J. Artif. Intell. Res.
2, 1–32 (1994).

6. macKay, D.J.C. Information Theory, Inference and
Learning Algorithms (Cambridge University Press,
Cambridge, UK, 2003).

7. Quinlan, J.r. & rivest, r.L. Inferring decision trees
using the minimum Description Length Principle. Inf.
Comput. 80, 227–248 (1989).

8. Breiman, L. random forests. Mach. Learn. 45, 5–32
(2001).

9. Heath, D., Kasif, S. & Salzberg, S. Committees of
decision trees. in Cognitive Technology: In Search of a

use sequence similarity among related spe-
cies. Allen et al.13 used decision trees within
the JIGSAW system to combine evidence from
many different gene finding methods, result-
ing in an integrated method that is one of the
best available ways to find genes in the human
genome and the genomes of other species.

Middendorf et al.14 used alternating deci-
sion trees to predict whether an S. cerevisiae
gene would be up- or downregulated under
particular conditions of transcription regula-
tor expression given the sequence of its regula-
tory region. In addition to good performance
predicting the expression state of target genes,
they were able to identify motifs and regula-
tors that appear to control the expression of
the target genes.

1. Quinlan, J.r. C4.5: Programs for Machine Learning.
(morgan Kaufmann Publishers, San mateo, CA, USA,
1993).

Pr ImEr
©

20
08

 N
at

ur
e

P
ub

lis
hi

ng
 G

ro
up

ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

