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What are decision trees?
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Decision trees have been applied to problems such as assigning protein function and predicting splice sites. How do 
these classifiers work, what types of problems can they solve and what are their advantages over alternatives?

Many scientific problems entail labeling 
data items with one of a given, finite set 

of classes based on features of the data items. 
For example, oncologists classify tumors as 
different known cancer types using biopsies, 
patient records and other assays. Decision 
trees, such as C4.5 (ref. 1), CART2 and newer 
variants, are classifiers that predict class labels 
for data items. Decision trees are at their heart 
a fairly simple type of classifier, and this is one 
of their advantages.

Decision trees are constructed by analyzing 
a set of training examples for which the class 
labels are known. They are then applied to 
classify previously unseen examples. If trained 
on high-quality data, decision trees can make 
very accurate predictions3.

Classifying with decision trees
A decision tree classifies data items (Fig. 1a) 
by posing a series of questions about the fea-
tures associated with the items. Each question 
is contained in a node, and every internal node 
points to one child node for each possible 
answer to its question. The questions thereby 
form a hierarchy, encoded as a tree. In the sim-
plest form (Fig. 1b), we ask yes-or-no ques-
tions, and each internal node has a ‘yes’ child 
and a ‘no’ child. An item is sorted into a class 
by following the path from the topmost node, 
the root, to a node without children, a leaf, 
according to the answers that apply to the item 
under consideration. An item is assigned to the 
class that has been associated with the leaf it 
reaches. In some variations, each leaf contains 

a probability distribution over the classes that 
estimates the conditional probability that an 
item reaching the leaf belongs to a given class. 
Nonetheless, estimation of unbiased prob-
abilities can be difficult4.

Questions in the tree can be arbitrarily com-
plicated, as long as the answers can be com-
puted efficiently. A question’s answers can be 
values from a small set, such as {A,C,G,T}. In 
this case, a node has one child for each possible 
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Figure 1  A hypothetical example of how a decision tree might predict protein-protein interactions. 
(a) Each data item is a gene pair associated with a variety of features. Some features are real-valued 
numbers (such as the chromosomal distance between the genes or the correlation coefficient of their 
expression profiles under a set of conditions). Other features are categorical (such as whether the 
proteins co-localize or are annotated with the same function). Only a few training examples are shown. 
(b) A hypothetical decision tree in which each node contains a yes/no question asking about a single 
feature of the data items. An example arrives at a leaf according to the answers to the questions. 
Pie charts indicate the percentage of interactors (green) and noninteractors (red) from the training 
examples that reach each leaf. New examples are predicted to interact if they reach a predominately 
green leaf or to not interact if they reach a predominately red leaf. In practice, random forests have 
been used to predict protein-protein interactions15.
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more than once. In addition, when choosing 
the question at each node, only a small, ran-
dom subset of the features is considered. With 
these two modifications, each run may result 
in a slightly different tree. The predictions of 
the resulting ensemble of decision trees are 
combined by taking the most common predic-
tion. Maintaining a collection of good hypoth-
eses, rather than committing to a single tree, 
reduces the chance that a new example will be 
misclassified by being assigned the wrong class 
by many of the trees.

Boosting10 is a machine-learning method 
used to combine multiple classifiers into a 
stronger classifier by repeatedly reweighting 
training examples to focus on the most prob-
lematic. In practice, boosting is often applied 
to combine decision trees. Alternating decision 
trees11 are a generalization of decision trees 
that result from applying a variant of boosting 
to combine weak classifiers based on decision 
stumps, which are decision trees that consist of 
a single question. In alternating decision trees, 
the levels of the tree alternate between standard 
question nodes and nodes that contain weights 
and have an arbitrary number of children. In 
contrast to standard decision trees, items can 
take multiple paths and are assigned classes 
based on the weights that the paths encounter. 
Alternating decision trees can produce smaller 
and more interpretable classifiers than those 
obtained from applying boosting directly to 
standard decision trees.

Applications to computational biology
Decision trees have found wide application 
within computational biology and bioinfor-
matics because of their usefulness for aggre-
gating diverse types of data to make accurate 
predictions. Here we mention only a few of the 
many instances of their use.

Synthetic sick and lethal (SSL) genetic 
interactions between genes A and B occur 
when the organism exhibits poor growth (or 
death) when both A and B are knocked out 
but not when either A or B is disabled indi-
vidually. Wong et al.12 applied decision trees 
to predict SSL interactions in Saccharomyces 
cerevisiae using features as diverse as whether 
the two proteins interact physically, localize to 
the same place in the cell or have the function 
recorded in a database. They were able to iden-
tify a high percentage of SSL interactions with 
a low false-positive rate. In addition, analysis 
of the computed trees hinted at several mecha-
nisms underlying SSL interactions.

Computational gene finders use a variety 
of approaches to determine the correct exon-
intron structure of eukaryotic genes. Ab initio 
gene finders use information inherent in the 
sequence, whereas alignment-based methods 

maximized when all the pi are equal. The Gini 
index2, another common measure of impu-
rity, is computed by 1 –        p

i Σi=1

m 2 .This is again 
zero when the set E contains items from only 
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many cases, we can choose the best question 
by enumerating all possibilities. If I is the 
entropy function, then the difference between 
the entropy of the distribution of the classes in 
the parent node and this weighted average of 
the children’s entropy is called the information 
gain. The information gain, which is express-
ible via the Kullback-Leibler divergence6, 
always has a nonnegative value.

We continue to select questions recursively 
to split the training items into ever-smaller 
subsets, resulting in a tree. A crucial aspect to 
applying decision trees is limiting the com-
plexity of the learned trees so that they do 
not overfit the training examples. One tech-
nique is to stop splitting when no question 
increases the purity of the subsets more than 
a small amount. Alternatively, we can choose 
to build out the tree completely until no leaf 
can be further subdivided. In this case, to 
avoid overfitting the training data, we must 
prune the tree by deleting nodes. This can be 
done by collapsing internal nodes into leaves 
if doing so reduces the classification error on 
a held-out set of training examples1. Other 
approaches, relying on ideas such as mini-
mum description length1,6,7, remove nodes in 
an attempt to explicitly balance the complex-
ity of the tree with its fit to the training data. 
Cross-validation on left-out training examples 
should be used to ensure that the trees gener-
alize beyond the examples used to construct 
them.

Ensembles of decision trees and other 
variants
Although single decision trees can be excel-
lent classifiers, increased accuracy often can 
be achieved by combining the results of a 
collection of decision trees8–10. Ensembles of 
decision trees are sometimes among the best 
performing types of classifiers3. Random for-
ests and boosting are two strategies for com-
bining decision trees.

In the random forests8 approach, many dif-
ferent decision trees are grown by a random-
ized tree-building algorithm. The training 
set is sampled with replacement to produce 
a modified training set of equal size to the 
original but with some training items included 

value. In many instances, data items will have 
real-valued features. To ask about these, the 
tree uses yes/no questions of the form “is the 
value > k?” for some threshold k, where only 
values that occur in the data need to be tested 
as possible thresholds. It is also possible to use 
more complex questions, taking either linear 
or logical combinations of many features at 
once5.

Decision trees are sometimes more interpre-
table than other classifiers such as neural net-
works and support vector machines because 
they combine simple questions about the data 
in an understandable way. Approaches for 
extracting decision rules from decision trees 
have also been successful1. Unfortunately, small 
changes in input data can sometimes lead to 
large changes in the constructed tree. Decision 
trees are flexible enough to handle items with 
a mixture of real-valued and categorical fea-
tures, as well as items with some missing fea-
tures. They are expressive enough to model 
many partitions of the data that are not as eas-
ily achieved with classifiers that rely on a single 
decision boundary (such as logistic regression 
or support vector machines). However, even 
data that can be perfectly divided into classes 
by a hyperplane may require a large decision 
tree if only simple threshold tests are used. 
Decision trees naturally support classification 
problems with more than two classes and can 
be modified to handle regression problems. 
Finally, once constructed, they classify new 
items quickly.

Constructing decision trees
Decision trees are grown by adding question 
nodes incrementally, using labeled training 
examples to guide the choice of questions1,2. 
Ideally, a single, simple question would per-
fectly split the training examples into their 
classes. If no question exists that gives such a 
perfect separation, we choose a question that 
separates the examples as cleanly as possible.

A good question will split a collection of 
items with heterogeneous class labels into 
subsets with nearly homogeneous labels, 
stratifying the data so that there is little 
variance in each stratum. Several measures 
have been designed to evaluate the degree of 
inhomogeneity, or impurity, in a set of items. 
For decision trees, the two most common 
measures are entropy and the Gini index. 
Suppose we are trying to classify items into 
m classes using a set of training items E. Let 
pi (i = 1,…,m) be the fraction of the items of 
E that belong to class i. The entropy of the 
probability distribution (p

i
)

i=1
m  gives a reason-

able measure of the impurity of the set E. The 
entropy, –       p

i
logp

iΣi=1

m , is lowest when a single 
pi equals 1 and all others are 0, whereas it is 
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use sequence similarity among related spe-
cies. Allen et al.13 used decision trees within 
the JIGSAW system to combine evidence from 
many different gene finding methods, result-
ing in an integrated method that is one of the 
best available ways to find genes in the human 
genome and the genomes of other species.

Middendorf et al.14 used alternating deci-
sion trees to predict whether an S. cerevisiae 
gene would be up- or downregulated under 
particular conditions of transcription regula-
tor expression given the sequence of its regula-
tory region. In addition to good performance 
predicting the expression state of target genes, 
they were able to identify motifs and regula-
tors that appear to control the expression of 
the target genes.

1. Quinlan, J.r. C4.5: Programs for Machine Learning. 
(morgan Kaufmann Publishers, San mateo, CA, USA, 
1993).

Pr ImEr
©

20
08

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy




