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allow us to genotype all known SNPs, we pick a 
set of tagSNPs such that the ungenotyped SNPs 
(or hidden SNPs) are in linkage disequilibrium 
with the tag SNPs. Thus, if the causal SNP is 
a hidden SNP, we expect to find a correlation 
between the phenotype and the tag SNPs due 
to correlation between the two SNPs. To do 
so, we first have to decide on a criterion for 
when one SNP ‘captures’ another. Although D′ 
is a possible candidate, the relation between D′ 
and the power to detect association is not clear. 
Alternatively, one can simply measure the cor-
relation coefficient r between the two SNPs. 
The correlation coefficient is a measure, which 
ranges from –1 to 1, of how well two variables 
predict each other; formally, it is defined as
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Often, the square of the correlation coefficient 
is used; whereas r2 = 1 indicates that the two 
SNPs are perfectly correlated, r2 = 0 implies that 
the two SNPs segregate independently through-
out the population. The correlation coefficient 
is often chosen as the criterion for selecting tag-
SNPs, as there is a direct relation between r2 and 
the power to detect association. If the true causal 
SNP is s1, then the power to detect association at 
s2 by genotyping N individuals is approximately 
the power attained by genotyping r2N individu-
als at s1 (ref. 8).

Based on this observation, an ideal set of 
tagSNPs will be a minimal set of SNPs with 
a high correlation coefficient between every 
hidden SNP and its corresponding tagSNP. 
The definition of ‘high’ may be somewhat 
subjective, and it generally depends on the 
resources available (that is, the total number  
of SNPs that will be genotyped). As the power to 
detect association in SNPs depends on their allele 
frequency, it is advised to use a more stringent 
threshold for such SNPs. In practice, however,  

Indirect association and linkage 
disequilibrium
Recent technological advances allow us to 
rapidly genotype >106 SNPs in an individual, 
accounting for 10% of the estimated num-
ber of common SNPs (>1% minor allele fre-
quency) across the population2. As a result, 
true associations might be missed if the causal 
SNP is not genotyped or if the causal variant 
is an unknown variant. Computational meth-
ods have been developed to account for some 
of the unobserved variants3–7. The rationale for 
these methods is based on the observation that 
SNPs in close proximity to one another in the 
genome tend be correlated, or in linkage dis-
equilibrium.

There are a few metrics that measure the link-
age disequilibrium between a pair of SNPs. The 
linkage disequilibrium parameter D measures the 
linkage disequilibrium between a pair of SNPs 
s1 and s2. D is defined as D = P12 – p1p2, where 
P12 is the frequency of chromosomes with the 
minor allele present in both SNPs, and pi is the 
frequency of the minor allele frequency at SNP si. 
Intuitively, D measures the deviation of the joint 
distribution from the case where the SNPs are 
inherited independently. It is largely determined 
by the recombination rate between the two SNPs. 
If ρ is the probability of a recombination in a 
single meiosis in the region spanned by these 
SNPs, the linkage-disequilibrium parameter 
should change to Dn = (1 – ρ)Dn–1 in subsequent 
generations. A more commonly used metric is  
D′ = D/Dmax, where Dmax is the maximal possible 
value of D for the given allele frequencies p1 and 
p2. As this metric does not directly depend on 
the allele frequencies, we can compare ‘apples to 
apples’ when contrasting linkage disequilibrium 
between different pairs of SNPs.

In association studies, linkage disequilib-
rium between SNPs can be used to replace 
a direct association test with an indirect one 
(tagSNP). As current technology does not 

The etiology of many complex diseases is 
attributed to a combination of genetic and 

environmental risk factors. Knowledge of these 
influences yields insight into disease mechan 
isms and can thus ultimately enable better 
preventive, diagnostic and therapeutic strate-
gies. The most common genetic variants in the 
human genome are single nucleotide polymor-
phisms (SNPs)—point mutations with multiple 
possible alleles at a locus across the population. 
Genome-wide association (GWA) studies exam-
ine the set of cases and controls at many poly-
morphic sites and often identify one or several 
physical location(s) in the genome where genetic 
variation contributes to disease susceptibility1.

Although conceptually straightforward, the 
statistical and computational aspects of GWA 
studies are considerable. They encompass the 
design of a well-powered study, controlling 
for confounding risk factors (e.g., population 
structure or exposure to environmental risks), 
accurate genotyping, correcting for multiple 
hypothesis testing and defining interactions 
between different SNPs. Such statistical mea-
sures are necessary whether we use current 
high-density SNP genotyping approaches or 
complete whole-genome sequencing in the 
future. We discuss here the foundation that 
allows us to capture information about regions 
of the genome that are currently not genotyped 
using standard high-throughput technologies. 
Understanding these computational approaches 
is key to maximizing identification of disease-
associated DNA variants.
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Recently, different approaches have been pro-
posed to choose a set of haplotype-based statisti-
cal tests that will be performed on the data given 
a fixed set of tagSNPs. One generalization of the  
haplotype-based test assigns a weight wi to each 
haplotype hi, and the resulting proxy for a nearby 
SNP is given by
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(ref. 5). An optimal choice 
of the weights guarantees improved power com-
pared to the single-SNP or single-haplotype tests 
as these tests correspond to specific choices of 
the weights. It turns out that such an optimal 
set of weights corresponds to the probabilistic 
‘imputation’ of a hidden SNP using the observed 
SNPs; in other words, we can use the haplotype 
structure of a reference population such as the 
HapMap9 to learn the conditional distribution of 
a hidden SNP based on the haplotype distribu-
tion in the tagSNPs. Currently there is a major 
effort to improve the methods for imputation 
of hidden SNPs, as these methods promise to 
improve the power of association studies and to 
reach SNPs that have not been genotyped in the 
study. We will discuss these methods and their 
applications in genome-wide association studies 
in a future paper.
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Multimarker methods and haplotypes
We have discussed the possibility of having 
one tagSNP that covers a hidden SNP. Often, 
multiple tagSNPs serve as a better proxy for a 
hidden SNP than any single tagSNP. In table 
1, SNPs 1 and 2 cannot serve as a proxy to SNP 
3, but together, they correlate almost perfectly 
to SNP 3 (that is, when SNPs 1 and 2 carry the 
A allele, then SNP 3 most likely carries the C 
allele). We can thus predict SNP 3 with a 3% 
error rate by considering only tagSNPs 1 and 
2—a considerably better outcome than when 
using SNP 1 or 2 alone. Note, however, that we 
are using the haplotype information and not 
genotypes. Unlike genotypes, which represent 
the allelic information on both chromosomes, 
haplotypes represent the information on only 
one of the chromosomes (Fig. 1).

Current whole-genome platforms can geno 
type a fixed set of SNPs that cannot be custom-
ized per experiment. To take advantage of hap-
lotypes within these constraints, de Bakker et 
al. suggested that for every hidden SNP s, one 
can exhaustively search the HapMap data set 
for a proxy haplotype for which the square of 
the correlation coefficient with SNP s is higher 
than a given threshold4. Deriving a haplotype 
proxy is not a computationally trivial task, as the 
number of potential haplotypes is enormous. 
In principle, every set of SNPs (not necessarily 
consecutive) may potentially span a haplotype 
proxy. Exhaustively searching across all possi-
ble sets of SNPs is infeasible; however, to allow 
for a manageable running time, the algorithm 
considers only short haplotypes (2–3 SNPs) 
and only SNPs in close proximity to the hidden 
SNP. As SNPs that are physically far from the 
hidden SNP are unlikely to correlate well with 
it owing to increased probability for recombi-
nation between the sites, these restrictions do 
not cause substantial loss of information. Once 
the proxy is found, the haplotype can be tested 
for association with the disease by performing 
a standard χ2 test. de Bakker et al. have shown 
that the use of haplotypes is beneficial and con-
sequently increases the power to detect an asso-
ciation4. Intuitively, this is because the number 
of haplotypes in any given region is smaller than 
the number of genotypes (table 2), resulting in 
a larger sample size that is used to estimate any 
given haplotype. More importantly, the haplo-
types represent the ancestral genetic structure 
that is shaped by evolutionary forces such as 
recombination rates and mutations, and these 
are implicitly taken into account when haplo-
types are analyzed, as opposed to genotypes.

The above discussion deals with the case 
where the set of genotyped SNPs is not neces-
sarily fixed. However, in practice, high-through-
put genotyping platforms are designed so that 
there is no flexibility in the tag SNP selection. 

association studies are normally designed with a 
fixed threshold in mind for all SNPs; a common 
choice is a threshold of r2 > 0.8.

Unfortunately, defining the best set of tag-
SNPs is computationally intractable in its full 
general form. In practice, an iterative greedy 
algorithm works well3. This algorithm analyzes 
a reference data set, such as the data provided 
by the International HapMap Project, in which 
270 individuals from four different populations 
were genotyped at 3.1 million SNPs across the 
genome9. The algorithm finds a set of tagSNPs 
that ‘covers’ all other SNPs, where SNP s1 covers 
SNP s2 if the r2 between them is larger than a 
threshold specified by the user. The algorithm 
works in iterations; initially, all the genotypes 
of the SNPs in the reference data set (in this 
case 3.1 million) are considered ‘uncovered’. An 
iteration involves finding a tagSNP that covers 
the maximum number of uncovered SNPs. 
The tagSNP, as well as the SNPs that it covers, 
is considered covered from that point further. 
The algorithm ends when all possible SNPs are 
covered. This method is effective and widely 
used to define linkage-disequilibrium structure 
and tagSNPs in the genome. The scaffold can 
then be superimposed on the available high-
density genotyping platforms, and the subset 
of hidden SNPs that the platform captures can 
be identified.

Table 1  Haplotypes improve the   
 prediction of hidden SNPs

SNP1 SNP2 SNP3 Frequency

A A C 23%

A A T 1%

G A C 40%

G G C 2%

G G T 34%

SNPs 1 and 2 alone have poor power to predict the 
genotype at SNP 3, even when the phased haplotype 
is known. But together, using a multimarker tagSNP 
approach, SNPs 1 and 2 predict SNP 3 with 97% 
accuracy. 

Table 2  Genotype prediction power
SNP1 SNP2 SNP3 Frequency

A A C 5.3%

A A H 0.5%

H A C 18.4%

H H C 0.9%

H H H 15.7%

H A H 0.8%

H H T 0.7%

G A C 16%

G H C 1.6%

G H H 27.2%

G G H 1.3%

G G T 11.6%

When using genotype information, the same SNPs 
1 and 2 have less power to predict the genotype at 
SNP 3, as the third SNP remains ambiguous even 
when the full genotype information is given at SNPs 
1 and 2. ‘H’ denotes a heterozygote for that SNP.

Figure 1  TagSNPs and haplotype information can 
enhance the ability to identify disease-related 
loci using linkage disequilibrium. On the left side 
is a genotype of an individual, where A,G,C,T 
correspond to homozygous genotypes and ‘H’ 
denotes a heterozygous genotype. On the right 
side are the two haplotypes of the same individual. 
Another possible pair of haplotypes that explain 
the genotype is AGACG, AGGCA. Phasing methods 
use the population information to infer which of 
the possible haplotypes is correct.
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