
894 volume 31 NumBeR 10 oCToBeR 2013 nature biotechnology

The anatomy of successful computational biology
software
Stephen Altschul1, Barry Demchak2, Richard Durbin3, Robert Gentleman4, Martin Krzywinski5, Heng Li6,
Anton Nekrutenko7, James Robinson6, Wayne Rasband8, James Taylor9 & Cole Trapnell10

Creators of software widely used in computational biology discuss the factors that contributed to their success

The year was 1989 and Stephen Altschul
had a problem. Sam Karlin, the brilliant

mathematician whose help he needed, was
so convinced of the power of a mathemati-
cally tractable but biologically constrained
measure of protein sequence similarity that
he would not listen to Altschul (or anyone
else for that matter). So Altschul essentially
tricked him into solving the problem sty-
mying the field of computational biology
by posing it in terms of pure mathematics,
devoid of any reference to biology. The treat
from that trick became known as the Karlin-
Altschul statistics that are a key part of
BLAST, arguably the most successful piece of
computational biology software of all time.

Nature Biotechnology spoke with Altschul
and several other originators of computa-
tional biology software programs widely
used today (Table 1). The conversations
explored what makes certain software tools
successful, the unique challenges of develop-
ing them for biological research and how the
field of computational biology, as a whole,
can move research agendas forward. What
follows is an edited compilation of inter-
views.

What factors determine whether scientific
software is successful?
Stephen Altschul: BLAST was the first program
to assign rigorous statistics to useful scores of
local sequence alignments. Before then people

had derived many
different scoring sys-
tems, and it wasn’t
clear why any should
have a particular
advantage. I had made
a conjecture that
every scoring system
that people proposed
using was implicitly a
log-odds scoring sys-
tem with particular
‘target frequencies’,

and that the best scoring system would be one
where the target frequencies were those you
observed in accurate alignments of real proteins.

It was the mathematician Sam Karlin who
proved this conjecture and derived the for-
mula for calculating the statistics of the scores
[E-values] output by BLAST. This was the
gravy to the algorithmic innovations of David
Lipman, Gene Myers, Webb Miller and Warren
Gish that yielded BLAST’s unprecedented
combination of sensitivity and speed.

Another great aspect of the popularity of
BLAST was that over time it was seamlessly
linked to NCBI’s sequence and literature data-
bases, which were updated daily. When we
developed BLAST, the databases available were
in relatively poor shape. In many instances, you
had to wait for over a year between the publica-
tion of a paper and when its sequences appeared
in a database. A lot of very talented and dedi-
cated people worked to construct the infra-
structure at NCBI that allowed you to search
up-to-date databases online.
Cole Trapnell: Pro bably the most impor-

tant thing is that
Cufflinks, Bowtie
(which is mainly Ben
Langmead’s work)
and TopHat were in
large part at the right
place at the right time.
We were stepping into
fields that were poised
to explode, but which
really had a vacuum in
terms of usable tools.
You get two things

from being first. One is a startup user base. The
second is the opportunity to learn directly from
people what the right way, or one useful way, to
do the analysis would be.

Heng Li (developed MAQ, BWA, SAMtools
and other genomics tools): I agree timing is
important. When MAQ came out, there was no
other software that could do integrated mapping
and SNP [single-nucleotide polymorphism]
calling. BWA was among the first batch of
Burrows-Wheeler–based aligners (BWA, Bowtie
and SOAP2 were all developed at about the same
time). Similarly, SAMtools was the first generic
SNP caller that worked with any aligner, as long
as the aligner output SAM format.

Robert Gentleman:
The real big success of
R, I think, was around
the package system.
Anybody that wanted
to could write a pack-
age to carry out a par-
ticular analysis. At the
same time, this sys-
tem allowed the stan-
dard R language to be
developed, designed

1National Center for Biotechnology
Information, Bethesda, Maryland. 2University
of California San Diego, La Jolla, California.
3Wellcome Trust Sanger Institute, Hinxton,
UK. 4Genentech, South San Francisco,
California. 5British Columbia Cancer Research
Centre, Vancouver, Canada. 6Broad Institute,
Cambridge, Massachusetts. 7Penn State
University, University Park, Pennsylvania.
8National Institute of Mental Health, Bethesda,
Maryland. 9Emory University, Atlanta,
Georgia. 10Harvard University, Cambridge,
Massachusetts.

Stephen Altschul co-
developed BLAST.

Cole Trapnell
developed the Tophat/
Cufflinks suite of short-
read analysis tools.

Robert Gentleman is
co-creator of the R
language for statistical
analyses.

f e aT u r e
np

g
©

 2
01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature biotechnology volume 31 NumBeR 10 oCToBeR 2013 895

to build the maps available to external scientists
so they could look at the evidence and the data.
It’s important, I think, to generate data at the
same time as writing software for those data,
being driven by problems that are at hand.

Does scientific software development
differ from that for other types of software?
Durbin: Scientific software often requires quite
a strong insight—that is, algorithmic develop-
ment. The algorithm implements novel ideas, is
based on deep scientific understanding of data
and the problem, and takes a step beyond what
has been done previously. In contrast, a lot of
commercial software is doing specific cases of
fairly straightforward things—book-keeping
and moving things around and so on.

Gentleman: I have found that real hardcore
software engineers tend to worry about prob-
lems that are just not existent in our space. They
keep wanting to write clean, shiny software,
when you know that the software that you’re
using today is not the software you’re going
to be using this time next year. At Genentech
(S. San Francisco, California), we develop test-
ing and deployment paradigms that are on
somewhat shorter cycles.

Windows. And fourth, ImageJ is open source,
so users can inspect, modify and fix the source
code.

Richard Durbin: I think a key thing is that
software or a data format does a clean job cor-
rectly, that it works. For the software I’ve been

involved with, I think
support isn’t a criti-
cal thing, in a strange
way. Rather, it’s the
lack of need for sup-
port that’s important.

Also, I have always
wanted to use the
software I developed,
or my group has
wanted to use it to
do our own job. John
Sulston taught me to
try to write something

that does the best possible job for yourself and
enables others to see what you would want to get
out of the data. Don’t think that you’ll produce
one version for yourself and then somehow
have a different tool for others. For example,
the people who built the C. elegans physical
maps in the ’80s made the same software used

and driven forward by a core group of people.
For Bioconductor, which provides tools in

R for analyzing genomic data, interoperability
was essential to its success. We defined a hand-
ful of data structures that we expected people to
use. For instance, if everybody puts their gene
expression data into the same kind of box, it
doesn’t matter how the data came about, but
that box is the same and can be used by ana-
lytic tools. Really, I think it’s data structures that
drive interoperability.

Wayne Rasband: Several factors have contrib-
uted to the usability of ImageJ. First, it has a
relatively simple graphical user interface, simi-

lar to popular desk-
top software, such as
Photoshop. Second,
there is a large com-
munity of users and
developers willing
to answer questions,
contribute plugins
and macros, and find
and fix bugs. Third,
because it is written
in Java, ImageJ runs
on Linux, Macs and

Table 1 Software for the ages
Software Purpose Creators Key capabilities Year released Citationsa

BLAST Sequence alignment Stephen Altschul, Warren Gish,
Gene Myers, Webb Miller,
David Lipman

First program to provide statistics for
sequence alignment, combination of
sensitivity and speed

1990 35,617

R Statistical analyses Robert Gentleman, Ross Ihaka Interactive statistical analysis,
extendable by packages

1996 N/A

ImageJ Image analysis Wayne Rasband Flexibility and extensibility 1997 N/A

Cytoscape Network visualization and analysis Trey Ideker et al. Extendable by plugins 2003 2,374

Bioconductor Analysis of genomic data Robert Gentleman et al. Built on R, provides tools to enhance
reproducibility of research

2004 3,517

Galaxy Web-based analysis platform Anton Nekrutenko, James Taylor Provides easy access to high-
performance computing

2005 309b

MAQ Short-read mapping Heng Li, Richard Durbin Integrated read mapping and SNP call-
ing, introduced mapping quality scores

2008 1,027

Bowtie Short-read mapping Ben Langmead, Cole Trapnell,
Mihai Pop, Steven Salzberg

Fast alignment allowing gaps and
mismatches based on Burrows-
Wheeler Transform

2009 1,871

Tophat RNA-seq read mapping Cole Trapnell, Lior Pachter,
Steven Salzberg

Discovery of novel splice sites 2009 817

BWA Short-read mapping Heng Li, Richard Durbin Fast alignment allowing gaps and
mismatches based on Burrows-
Wheeler Transform

2009 1,556

Circos Data visualization Martin Krzywinski et al. Compact representation of similarities
and differences arising from compari-
son between genomes

2009 431

SAMtools Short-read data format and utilities Heng Li, Richard Durbin Storage of large nucleotide sequence
alignments

2009 1,551

Cufflinks RNA-seq analysis Cole Trapnell, Steven Salzberg,
Barbara Wold, Lior Pachter

Transcript assembly and quantification 2010 710

IGV Short-read data visualization James Robinson et al. Scalability, real-time data exploration 2011 335
aCitations in Web of Science as of September 2013 of the first paper describing the software. bA comprehensive list of publications (1,150 as of September 2013) related to Galaxy is at
http://www.citeulike.org/group/16008/order/group_rating. N/A, paper not available in Web of Science.

Wayne Rasband
developed the ImageJ
image analysis software.

Richard Durbin led
the development of
many tools and data
standards in genomics.

F EATuRE
np

g
©

 2
01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.citeulike.org/group/16008/order/group_rating

896 volume 31 NumBeR 10 oCToBeR 2013 nature biotechnology

isn’t necessarily even meant for adoption by a
community. It’s more a vehicle for producing
data to argue that a computational method
is sound or that it has the properties that are
being claimed.

Gentleman: I’ll point to the ‘bump hunt-
ing’ tools for finding peaks in [chromatin
immunoprecipitation] ChIP-seq data. There
must be a hundred of those. Why are there so
many? They either all work equally well, and
it doesn’t matter which one you use. Or, each
one of them does something that’s a little bit
different, and we simply have not figured out
how to decide which one is best. I argue that
it’s more the latter than the former. What’s
missing is, ‘How do we generate large data
sets with enormous numbers of false positives
and false negatives?’ You need a sufficiently
big and complicated data set, where you know
the truth, to understand whether one method
is better than another, whether I’m getting
exactly the same answer but I’m just getting it
faster or whether I’m getting different answers
that are both flawed. Those sorts of things are
part of what can help you drive from a diver-
sity of computational tools down to a relative
few that work better.

Taylor: I don’t think there are good incen-
tives for contributing to and improving exist-
ing software instead of inventing something
new. The latter is more likely to be publish-
able. There is also a problem with discovering
software that exists; often people reinvent the
wheel just because they don’t know any better.
Good repositories for software and best prac-
tice workflows, especially if citable, would be
a start.

Anton Nekrutenko (co-creator of Galaxy): This
is the key idea behind the Galaxy Tool Shed, our
app store. So far, it contains about 2,700 tools.
The goal of this mechanism is to make it easy
to try each tool and then vote on which ones
perform well.

How is the field of computational biology
evolving?
Durbin: Now there are a lot of strong, young,
faculty members who label themselves as com-
putational analysts, yet very often want wet-lab
space. They’re not content just working off data
sets that come from other people. They want to
be involved in data generation and experimental
design and mainstreaming computation as a valid
research tool. Just as the boundaries of biochem-
istry and cell biology have kind of blurred, I think
the same will be true of computational biology. It’s
going to be alongside biochemistry, or molecular
biology or microscopy as a core component.

program, such as IGV or the UCSC browser, can
help with this. However, it is also important to
understand what the developers of the visual-
ization have chosen to emphasize, through the
use of color and other techniques, and what they
have chosen to de-emphasize.

Martin Krzywinski: In a way, a fixed visualiza-
tion is only one answer. It’s one projection, one
encoding, one view of the data. Depending on
the complexity of the data and the number of
dimensions, there are many views. We have
to accept that what we’re seeing is akin to a

shadow on the wall.
An object can cast
many different shad-
ows, depending on its
shape. We can’t look
at the shadow and say
that that’s the object.
We have to remember
that that’s the shadow
of the object and that
the object has some
higher dimensional
properties.

Li: People not doing the computational work
tend to think that you can write a program very
fast. That, I think, is frankly not true. It takes
a lot of time to implement a prototype. Then
it actually takes a lot of time to really make it
better.

Demchak: Quite often, users don’t appreciate
the opportunities. Noncomputational biologists
don’t know when to complain about the status
quo. With modest amounts of computational
consulting, long or impossible jobs can become
much shorter or richer.

Are too many new software tools developed
that ultimately don’t get used?
Durbin: This is kind of a debate of top down
versus bottom up. In science, always there are
lots of people looking at the same thing in dif-
ferent ways. There are people trying out all
sorts of crazy things. It’s extremely successful
to not have top-down control. It can look a
little bit redundant when you have a person
write yet another read mapper, but some-
times things will be influential. New ideas
will come. Sometimes things can be relevant
to individual projects. I think for sure things
are done inefficiently. I accept that. It’s a bit
like evolution. Random mutation and testing
is very powerful.

Trapnell: Maybe the way to look at it is the
software that gets produced is, in a sense, the
piece of supporting data for those papers, and

James Taylor: A lot of
traditional software
engineering is about
how to build software
effectively with large
teams, whereas the
way most scientific
software is developed
is (and should be)
different. Scientific
software is often
developed by one or

a handful of people.

Barry Demchak (lead Cytoscape software
architect): The status quo of software devel-
opment in the 1990s is where computational
biologists are today—for loops, variables and
function calls. Computer science has moved
on, particularly in three areas: functional pro-
gramming, service-oriented architectures and
domain-specific languages.

What misconceptions does the research
community have about software
development or use?
Trapnell: I think the biggest misconception
is that something you put on the Internet for
people to use is a finished product. Each version
of Cufflinks and Tophat, for instance, offered
performance improvements and bug fixes. But
they often also had substantial new features that
actually reflected a new understanding about
what’s going on in the computer science and the
mathematics and the statistics that are attached
to RNA-seq. Really fundamental stuff. The way
that translates into the software that people use
is that they download one version and they run
the analysis and then they upgrade and then the
results change, sometimes a little bit, sometimes
a lot. That creates the impression, which I think
is the wrong impression, that one or both of
those sets of results is just totally wrong. People
don’t, I think, frequently understand just how
much those programs are research projects that
are continually evolving.

James Robinson: Perhaps that the software is
more sophisticated than it actually is, leading
to too much faith in the results without critical

thinking. For analy-
sis software, such as
mutation calling, it’s
important to know at
some level what the
algorithms are, the
biases in them, what
they assume and how
they fail. Visualizing
algorithmic output
with a critical eye in a

James Taylor developed
the Galaxy platform.

James Robinson
developed the Integrative
Genomics Viewer.

Martin Krzywinski
developed the Circos
data visualization tool.

F EATuRE
np

g
©

 2
01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature biotechnology volume 31 NumBeR 10 oCToBeR 2013 897

sorts of complicated information in them, and
a few big files with complicated information in
them. How to deal with that is a different prob-
lem. We start with data in one format. We run it
through a very complex set of transformations
in a very complicated computing environment.
Tracking it, knowing which output of which ver-
sion of which tool we’re actually going to use,
and being sure that something that we started
actually finished—those are the really com-
plex cases for us. Those sorts of organizational
details are challenging to get right, but I think
most academics don’t have the problem on the
same scale.

Krzywinski: In terms of data visualization, the
idea that we can show all the data that we are
collecting is long gone. We now need to look
at the differences in the data sets, and help the
user focus on the things that are important.
Differences, and differences of differences, are
now the data. In addition, you cannot dump that
output from a program on a user, otherwise they
will become lost in this sea of detail. I think what
software needs is a series of output filters that
can be used to select for the level of detail in
the output.

Durbin: I once heard Nathan Myhrvold and
Sydney Brenner talk about “exponential tech-
nologies,” which were all characterized by pro-
viding an exponential increase in information.
Sequencing is like that. In the future, I think we
will get into cell biology, away from the genome.
I think it’s going to be done through high-
throughput data acquisition from instrumen-
tation of cell biological measurements of some
sort. I’m not exactly sure how, but I’m interested,
and excited by that.

that everybody needs in order to deal with
that kind of data (Box 1). The computational
folks need to learn more about statistics. The
biology folks need to understand basic compu-
tation in order to even be able to communicate
with the biostatistics crowd.

What are the emerging trends in
computational biology and software tools?
Robinson: The emergence of sequencing, and
even very high–resolution SNP and expression
platforms, means that virtually all computa-
tional biologists working with human sam-
ples now need to understand and deal with
implications of individual identification and
privacy.

Trapnell: The areas of computer science that will
be needed to solve these privacy issues are ones
that biologists have never even been exposed to.
It has to do with secret sharing and public-key
cryptography and all these other areas that we
just never worry about because they don’t come
up. Now they’re coming up in a huge way. So I
would expect that that is going to be a major
driver of a lot of serious computational work.

Taylor: Crowdsourcing is potentially a deep
trend. We’ve seen a lot with people having
success with verification of results. If we can
develop infrastructures to allow greater partici-
pation and to take advantage of large communi-
ties, the decision-making capabilities of groups
is going to be a continuing trend.

Gentleman: At Genentech, we have petabytes
of data, but it’s not ‘big data’ like at Amazon or
Walmart or in the airline industry. Our problem
is that we have lots of little, tiny files that have all

Nekrutenko: Many people can learn how to
program in C, but they still write horrific code
that nobody can understand. Most of the biol-
ogy graduate students who can program, they’re
more dangerous than people who cannot pro-
gram because they produce these things. It’s
horrible, but that’s what you expect from a new
field. It will change, and it needs to change just
through graduate education. For example, at
Penn State, we have a scientific programming
course designed for life science people with
sequence analysis in mind. It builds on ‘software
carpentry’ [http://software-carpentry.org/] by
teaching people that you need to version your
software. You need to write tests. All these skills,
that’s the missing part.

Trapnell: If you break down past work in
computational biology, there’ve been a couple
of historically really rich areas. One of them
stems from sequence alignment. From there,
you get paleogenetics and certain molecular
evolution studies. Then with microarrays,
you had the advent of genomics as a measure-
ment science, where you’re actually trying to
measure something about what’s happening in
some samples. With DNA sequencing, we are
seeing the convergence of those two things.
You get all of the possibilities in terms of state-
ments you might make with alignment and the
stuff that follows from that, but you also get
all the crazy statistical issues and numerical
analysis problems that arise when you’re mak-
ing quantitative measurements of biological
activity. I think the end-stage result is that,
now, sequencing is used not as a cataloging
technology, but really as a routine, day-to-day
measurement technology. That just reorients,
I think, the baseline computational skill set

Durbin: That’s a little like asking is it good for a molecular biologist
to know chemistry. I would say that computation is now as important
to biology as chemistry is. Both are useful background knowledge.
Data manipulation and use of information are part of the technology
of biology research now. Knowing how to program also gives people
some idea about what’s going on inside data analysis. It helps
them appreciate what they can and can’t expect from data analysis
software.

Trapnell: It’s probably not just that experimental biologists need to
program, but it’s also enormously helpful when computational folks
learn how to do experiments. For me, for example, coming from a
computer science background, the opposite way of thinking was hard
to learn. How do I learn to argue with wet-lab data? How do I learn
what to trust, what to distrust, how to cross-validate things? That’s
a radically different way of thinking when you’re used to proofs and
writing code and validating it on a computer.

Krzywinski: To some, the answer might be “no” because that’s left to
the experts, to the people downstairs who sit in front of a computer.

But a similar question would be: does every graduate student in
biology need to learn grammar? Clearly, yes. Do they all need to
learn to speak? Clearly, yes. We just don’t leave it to the literature
experts. That’s because we need to communicate. Do students
need to tie their shoes? Yes. It has now come to the point where
using a computer is as essential as brushing your teeth. If you
want some kind of a competitive edge, you’re going to want to
make as much use of that computer as you can. The complexity
of the task at hand will mean that canned solutions don’t exist.
It means that if you’re using a canned solution, you’re not at the
edge of research.

Robinson: Yes. Even if they don’t program in their research, they
will have to use software and likely will communicate with software
developers. It helps tremendously to have some basic knowledge.
Additionally, in the research environment, the ability to do basic
tasks in the Linux/unix environment is essential.

Rasband: All scientists should learn how to program.

Box 1 Does every new biology PhD student need to learn how to program?

Corrected after print 9 May 2014.

FEATuRE
np

g
©

 2
01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://software-carpentry.org/

nature biotechnology

Erratum: The anatomy of successful computational biology software
Stephen Altschul, Barry Demchak, Richard Durbin, Robert Gentleman, Martin Krzywinski, Heng Li, Anton Nekrutenko, James Robinson,
Wayne Rasband, James Taylor & Cole Trapnell
Nat. Biotechnol. 31, 894–897 (2013); published online 8 October 2013; corrected after print 9 May 2014

In the version of this article initially published, in Table 1, Steven Salzberg should have been listed as the second, and not the last, of the creators
of the Cufflinks software. The error has been corrected in the HTML and PDF versions of the article.

errata
np

g
©

 2
01
4

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

