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The anatomy of successful computational biology 
software
Stephen Altschul1, Barry Demchak2, Richard Durbin3, Robert Gentleman4, Martin Krzywinski5, Heng Li6,  
Anton Nekrutenko7, James Robinson6, Wayne Rasband8, James Taylor9 & Cole Trapnell10

Creators of software widely used in computational biology discuss the factors that contributed to their success

The year was 1989 and Stephen Altschul 
had a problem. Sam Karlin, the brilliant 

mathematician whose help he needed, was 
so convinced of the power of a mathemati-
cally tractable but biologically constrained 
measure of protein sequence similarity that 
he would not listen to Altschul (or anyone 
else for that matter). So Altschul essentially 
tricked him into solving the problem sty-
mying the field of computational biology 
by posing it in terms of pure mathematics, 
devoid of any reference to biology. The treat 
from that trick became known as the Karlin-
Altschul statistics that are a key part of 
BLAST, arguably the most successful piece of 
computational biology software of all time.

Nature Biotechnology spoke with Altschul 
and several other originators of computa-
tional biology software programs widely 
used today (Table 1). The conversations 
explored what makes certain software tools 
successful, the unique challenges of develop-
ing them for biological research and how the 
field of computational biology, as a whole, 
can move research agendas forward. What 
follows is an edited compilation of inter-
views.

What factors determine whether scientific 
software is successful?
Stephen Altschul: BLAST was the first program 
to assign rigorous statistics to useful scores of 
local sequence alignments. Before then people 

had derived many 
different scoring sys-
tems, and it wasn’t 
clear why any should 
have a particular 
advantage. I had made 
a conjecture that 
every scoring system 
that people proposed 
using was implicitly a 
log-odds scoring sys-
tem with particular 
‘target frequencies’, 

and that the best scoring system would be one 
where the target frequencies were those you 
observed in accurate alignments of real proteins. 

It was the mathematician Sam Karlin who 
proved this conjecture and derived the for-
mula for calculating the statistics of the scores 
[E-values] output by BLAST. This was the 
gravy to the algorithmic innovations of David 
Lipman, Gene Myers, Webb Miller and Warren 
Gish that yielded BLAST’s unprecedented 
combination of sensitivity and speed.

Another great aspect of the popularity of 
BLAST was that over time it was seamlessly 
linked to NCBI’s sequence and literature data-
bases, which were updated daily. When we 
developed BLAST, the databases available were 
in relatively poor shape. In many instances, you 
had to wait for over a year between the publica-
tion of a paper and when its sequences appeared 
in a database. A lot of very talented and dedi-
cated people worked to construct the infra-
structure at NCBI that allowed you to search 
up-to-date databases online.
Cole Trapnell: Pro bably the most impor-

tant thing is that 
Cufflinks, Bowtie 
(which is mainly Ben 
Langmead’s work) 
and TopHat were in 
large part at the right 
place at the right time. 
We were stepping into 
fields that were poised 
to explode, but which 
really had a vacuum in 
terms of usable tools. 
You get two things 

from being first. One is a startup user base. The 
second is the opportunity to learn directly from 
people what the right way, or one useful way, to 
do the analysis would be.

Heng Li (developed MAQ, BWA, SAMtools 
and other genomics tools): I agree timing is 
important. When MAQ came out, there was no 
other software that could do integrated mapping 
and SNP [single-nucleotide polymorphism] 
calling. BWA was among the first batch of 
Burrows-Wheeler–based aligners (BWA, Bowtie 
and SOAP2 were all developed at about the same 
time). Similarly, SAMtools was the first generic 
SNP caller that worked with any aligner, as long 
as the aligner output SAM format.

Robert Gentleman: 
The real big success of 
R, I think, was around 
the package system. 
Anybody that wanted 
to could write a pack-
age to carry out a par-
ticular analysis. At the 
same time, this sys-
tem allowed the stan-
dard R language to be 
developed, designed 
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Stephen Altschul co-
developed BLAST.

Cole Trapnell 
developed the Tophat/
Cufflinks suite of short-
read analysis tools.

Robert Gentleman is 
co-creator of the R 
language for statistical 
analyses.
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to build the maps available to external scientists 
so they could look at the evidence and the data. 
It’s important, I think, to generate data at the 
same time as writing software for those data, 
being driven by problems that are at hand.

Does scientific software development 
differ from that for other types of software?
Durbin: Scientific software often requires quite 
a strong insight—that is, algorithmic develop-
ment. The algorithm implements novel ideas, is 
based on deep scientific understanding of data 
and the problem, and takes a step beyond what 
has been done previously. In contrast, a lot of 
commercial software is doing specific cases of 
fairly straightforward things—book-keeping 
and moving things around and so on.

Gentleman: I have found that real hardcore 
software engineers tend to worry about prob-
lems that are just not existent in our space. They 
keep wanting to write clean, shiny software, 
when you know that the software that you’re 
using today is not the software you’re going 
to be using this time next year. At Genentech  
(S. San Francisco, California), we develop test-
ing and deployment paradigms that are on 
somewhat shorter cycles.

Windows. And fourth, ImageJ is open source, 
so users can inspect, modify and fix the source 
code.

Richard Durbin: I think a key thing is that 
software or a data format does a clean job cor-
rectly, that it works. For the software I’ve been 

involved with, I think 
support isn’t a criti-
cal thing, in a strange 
way. Rather, it’s the 
lack of need for sup-
port that’s important.

Also, I have always 
wanted to use the 
software I developed, 
or my group has 
wanted to use it to 
do our own job. John 
Sulston taught me to 
try to write something 

that does the best possible job for yourself and 
enables others to see what you would want to get 
out of the data. Don’t think that you’ll produce 
one version for yourself and then somehow 
have a different tool for others. For example, 
the people who built the C. elegans physical 
maps in the ’80s made the same software used 

and driven forward by a core group of people.
For Bioconductor, which provides tools in 

R for analyzing genomic data, interoperability 
was essential to its success. We defined a hand-
ful of data structures that we expected people to 
use. For instance, if everybody puts their gene 
expression data into the same kind of box, it 
doesn’t matter how the data came about, but 
that box is the same and can be used by ana-
lytic tools. Really, I think it’s data structures that 
drive interoperability.

Wayne Rasband: Several factors have contrib-
uted to the usability of ImageJ. First, it has a 
relatively simple graphical user interface, simi-

lar to popular desk-
top software, such as 
Photoshop. Second, 
there is a large com-
munity of users and 
developers willing 
to answer questions, 
contribute plugins 
and macros, and find 
and fix bugs. Third, 
because it is written 
in Java, ImageJ runs 
on Linux, Macs and 

Table 1  Software for the ages
Software Purpose Creators Key capabilities Year released Citationsa

BLAST Sequence alignment Stephen Altschul, Warren Gish,  
Gene Myers, Webb Miller,  
David Lipman

First program to provide statistics for 
sequence alignment, combination of 
sensitivity and speed

1990 35,617

R Statistical analyses Robert Gentleman, Ross Ihaka Interactive statistical analysis, 
extendable by packages

1996 N/A

ImageJ Image analysis Wayne Rasband Flexibility and extensibility 1997 N/A

Cytoscape Network visualization and analysis Trey Ideker et al. Extendable by plugins 2003 2,374

Bioconductor Analysis of genomic data Robert Gentleman et al. Built on R, provides tools to enhance 
reproducibility of research

2004 3,517

Galaxy Web-based analysis platform Anton Nekrutenko, James Taylor Provides easy access to high- 
performance computing

2005 309b

MAQ Short-read mapping Heng Li, Richard Durbin Integrated read mapping and SNP call-
ing, introduced mapping quality scores

2008 1,027

Bowtie Short-read mapping Ben Langmead, Cole Trapnell,  
Mihai Pop, Steven Salzberg

Fast alignment allowing gaps and 
mismatches based on Burrows-
Wheeler Transform

2009 1,871

Tophat RNA-seq read mapping Cole Trapnell, Lior Pachter,  
Steven Salzberg

Discovery of novel splice sites 2009 817

BWA Short-read mapping Heng Li, Richard Durbin Fast alignment allowing gaps and 
mismatches based on Burrows-
Wheeler Transform

2009 1,556

Circos Data visualization Martin Krzywinski et al. Compact representation of similarities 
and differences arising from compari-
son between genomes

2009 431

SAMtools Short-read data format and utilities Heng Li, Richard Durbin Storage of large nucleotide sequence 
alignments

2009 1,551

Cufflinks RNA-seq analysis Cole Trapnell, Steven Salzberg, 
Barbara Wold, Lior Pachter

Transcript assembly and quantification 2010 710

IGV Short-read data visualization James Robinson et al. Scalability, real-time data exploration 2011 335
aCitations in Web of Science as of September 2013 of the first paper describing the software. bA comprehensive list of publications (1,150 as of September 2013) related to Galaxy is at 
http://www.citeulike.org/group/16008/order/group_rating. N/A, paper not available in Web of Science.

Wayne Rasband 
developed the ImageJ 
image analysis software.

Richard Durbin led 
the development of 
many tools and data 
standards in genomics.
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isn’t necessarily even meant for adoption by a 
community. It’s more a vehicle for producing 
data to argue that a computational method 
is sound or that it has the properties that are 
being claimed.

Gentleman: I’ll point to the ‘bump hunt-
ing’ tools for finding peaks in [chromatin 
immunoprecipitation] ChIP-seq data. There 
must be a hundred of those. Why are there so 
many? They either all work equally well, and 
it doesn’t matter which one you use. Or, each 
one of them does something that’s a little bit 
different, and we simply have not figured out 
how to decide which one is best. I argue that 
it’s more the latter than the former. What’s 
missing is, ‘How do we generate large data 
sets with enormous numbers of false positives 
and false negatives?’ You need a sufficiently 
big and complicated data set, where you know 
the truth, to understand whether one method 
is better than another, whether I’m getting 
exactly the same answer but I’m just getting it 
faster or whether I’m getting different answers 
that are both flawed. Those sorts of things are 
part of what can help you drive from a diver-
sity of computational tools down to a relative 
few that work better.

Taylor: I don’t think there are good incen-
tives for contributing to and improving exist-
ing software instead of inventing something 
new. The latter is more likely to be publish-
able. There is also a problem with discovering 
software that exists; often people reinvent the 
wheel just because they don’t know any better. 
Good repositories for software and best prac-
tice workflows, especially if citable, would be 
a start.

Anton Nekrutenko (co-creator of Galaxy): This 
is the key idea behind the Galaxy Tool Shed, our 
app store. So far, it contains about 2,700 tools. 
The goal of this mechanism is to make it easy 
to try each tool and then vote on which ones 
perform well.

How is the field of computational biology 
evolving?
Durbin: Now there are a lot of strong, young, 
faculty members who label themselves as com-
putational analysts, yet very often want wet-lab 
space. They’re not content just working off data 
sets that come from other people. They want to 
be involved in data generation and experimental 
design and mainstreaming computation as a valid 
research tool. Just as the boundaries of biochem-
istry and cell biology have kind of blurred, I think 
the same will be true of computational biology. It’s 
going to be alongside biochemistry, or molecular 
biology or microscopy as a core component.

program, such as IGV or the UCSC browser, can 
help with this. However, it is also important to 
understand what the developers of the visual-
ization have chosen to emphasize, through the 
use of color and other techniques, and what they 
have chosen to de-emphasize.

Martin Krzywinski: In a way, a fixed visualiza-
tion is only one answer. It’s one projection, one 
encoding, one view of the data. Depending on 
the complexity of the data and the number of 
dimensions, there are many views. We have 
to accept that what we’re seeing is akin to a 

shadow on the wall. 
An object can cast 
many different shad-
ows, depending on its 
shape. We can’t look 
at the shadow and say 
that that’s the object. 
We have to remember 
that that’s the shadow 
of the object and that 
the object has some 
higher dimensional 
properties.

Li: People not doing the computational work 
tend to think that you can write a program very 
fast. That, I think, is frankly not true. It takes 
a lot of time to implement a prototype. Then 
it actually takes a lot of time to really make it 
better.

Demchak: Quite often, users don’t appreciate 
the opportunities. Noncomputational biologists 
don’t know when to complain about the status 
quo. With modest amounts of computational 
consulting, long or impossible jobs can become 
much shorter or richer.

Are too many new software tools developed 
that ultimately don’t get used?
Durbin: This is kind of a debate of top down 
versus bottom up. In science, always there are 
lots of people looking at the same thing in dif-
ferent ways. There are people trying out all 
sorts of crazy things. It’s extremely successful 
to not have top-down control. It can look a 
little bit redundant when you have a person 
write yet another read mapper, but some-
times things will be influential. New ideas 
will come. Sometimes things can be relevant 
to individual projects. I think for sure things 
are done inefficiently. I accept that. It’s a bit 
like evolution. Random mutation and testing 
is very powerful.

Trapnell: Maybe the way to look at it is the 
software that gets produced is, in a sense, the 
piece of supporting data for those papers, and 

James Taylor: A lot of 
traditional software 
engineering is about 
how to build software 
effectively with large 
teams, whereas the 
way most scientific 
software is developed 
is (and should be) 
different. Scientific 
software is often 
developed by one or 

a handful of people.

Barry Demchak (lead Cytoscape software 
architect): The status quo of software devel-
opment in the 1990s is where computational 
biologists are today—for loops, variables and 
function calls. Computer science has moved 
on, particularly in three areas: functional pro-
gramming, service-oriented architectures and 
domain-specific languages.

What misconceptions does the research 
community have about software 
development or use?
Trapnell: I think the biggest misconception 
is that something you put on the Internet for 
people to use is a finished product. Each version 
of Cufflinks and Tophat, for instance, offered 
performance improvements and bug fixes. But 
they often also had substantial new features that 
actually reflected a new understanding about 
what’s going on in the computer science and the 
mathematics and the statistics that are attached 
to RNA-seq. Really fundamental stuff. The way 
that translates into the software that people use 
is that they download one version and they run 
the analysis and then they upgrade and then the 
results change, sometimes a little bit, sometimes 
a lot. That creates the impression, which I think 
is the wrong impression, that one or both of 
those sets of results is just totally wrong. People 
don’t, I think, frequently understand just how 
much those programs are research projects that 
are continually evolving.

James Robinson: Perhaps that the software is 
more sophisticated than it actually is, leading 
to too much faith in the results without critical 

thinking. For analy-
sis software, such as 
mutation calling, it’s 
important to know at 
some level what the 
algorithms are, the 
biases in them, what 
they assume and how 
they fail. Visualizing 
algorithmic output 
with a critical eye in a 

James Taylor developed 
the Galaxy platform.

James Robinson 
developed the Integrative 
Genomics Viewer.

Martin Krzywinski 
developed the Circos 
data visualization tool.
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sorts of complicated information in them, and 
a few big files with complicated information in 
them. How to deal with that is a different prob-
lem. We start with data in one format. We run it 
through a very complex set of transformations 
in a very complicated computing environment. 
Tracking it, knowing which output of which ver-
sion of which tool we’re actually going to use, 
and being sure that something that we started 
actually finished—those are the really com-
plex cases for us. Those sorts of organizational 
details are challenging to get right, but I think 
most academics don’t have the problem on the 
same scale.

Krzywinski: In terms of data visualization, the 
idea that we can show all the data that we are 
collecting is long gone. We now need to look 
at the differences in the data sets, and help the 
user focus on the things that are important. 
Differences, and differences of differences, are 
now the data. In addition, you cannot dump that 
output from a program on a user, otherwise they 
will become lost in this sea of detail. I think what 
software needs is a series of output filters that 
can be used to select for the level of detail in 
the output.

Durbin: I once heard Nathan Myhrvold and 
Sydney Brenner talk about “exponential tech-
nologies,” which were all characterized by pro-
viding an exponential increase in information. 
Sequencing is like that. In the future, I think we 
will get into cell biology, away from the genome. 
I think it’s going to be done through high-
throughput data acquisition from instrumen-
tation of cell biological measurements of some 
sort. I’m not exactly sure how, but I’m interested, 
and excited by that. 

that everybody needs in order to deal with 
that kind of data (Box 1). The computational 
folks need to learn more about statistics. The 
biology folks need to understand basic compu-
tation in order to even be able to communicate 
with the biostatistics crowd.

What are the emerging trends in 
computational biology and software tools?
Robinson: The emergence of sequencing, and 
even very high–resolution SNP and expression 
platforms, means that virtually all computa-
tional biologists working with human sam-
ples now need to understand and deal with 
implications of individual identification and 
privacy.

Trapnell: The areas of computer science that will 
be needed to solve these privacy issues are ones 
that biologists have never even been exposed to. 
It has to do with secret sharing and public-key 
cryptography and all these other areas that we 
just never worry about because they don’t come 
up. Now they’re coming up in a huge way. So I 
would expect that that is going to be a major 
driver of a lot of serious computational work.

Taylor: Crowdsourcing is potentially a deep 
trend. We’ve seen a lot with people having 
success with verification of results. If we can 
develop infrastructures to allow greater partici-
pation and to take advantage of large communi-
ties, the decision-making capabilities of groups 
is going to be a continuing trend.

Gentleman: At Genentech, we have petabytes 
of data, but it’s not ‘big data’ like at Amazon or 
Walmart or in the airline industry. Our problem 
is that we have lots of little, tiny files that have all 

Nekrutenko: Many people can learn how to 
program in C, but they still write horrific code 
that nobody can understand. Most of the biol-
ogy graduate students who can program, they’re 
more dangerous than people who cannot pro-
gram because they produce these things. It’s 
horrible, but that’s what you expect from a new 
field. It will change, and it needs to change just 
through graduate education. For example, at 
Penn State, we have a scientific programming 
course designed for life science people with 
sequence analysis in mind. It builds on ‘software 
carpentry’ [http://software-carpentry.org/] by 
teaching people that you need to version your 
software. You need to write tests. All these skills, 
that’s the missing part.

Trapnell: If you break down past work in 
computational biology, there’ve been a couple 
of historically really rich areas. One of them 
stems from sequence alignment. From there, 
you get paleogenetics and certain molecular 
evolution studies. Then with microarrays, 
you had the advent of genomics as a measure-
ment science, where you’re actually trying to 
measure something about what’s happening in 
some samples. With DNA sequencing, we are 
seeing the convergence of those two things. 
You get all of the possibilities in terms of state-
ments you might make with alignment and the 
stuff that follows from that, but you also get 
all the crazy statistical issues and numerical 
analysis problems that arise when you’re mak-
ing quantitative measurements of biological 
activity. I think the end-stage result is that, 
now, sequencing is used not as a cataloging 
technology, but really as a routine, day-to-day 
measurement technology. That just reorients, 
I think, the baseline computational skill set 

Durbin: That’s a little like asking is it good for a molecular biologist 
to know chemistry. I would say that computation is now as important 
to biology as chemistry is. Both are useful background knowledge. 
Data manipulation and use of information are part of the technology 
of biology research now. Knowing how to program also gives people 
some idea about what’s going on inside data analysis. It helps 
them appreciate what they can and can’t expect from data analysis 
software.

Trapnell: It’s probably not just that experimental biologists need to 
program, but it’s also enormously helpful when computational folks 
learn how to do experiments. For me, for example, coming from a 
computer science background, the opposite way of thinking was hard 
to learn. How do I learn to argue with wet-lab data? How do I learn 
what to trust, what to distrust, how to cross-validate things? That’s 
a radically different way of thinking when you’re used to proofs and 
writing code and validating it on a computer.

Krzywinski: To some, the answer might be “no” because that’s left to 
the experts, to the people downstairs who sit in front of a computer. 

But a similar question would be: does every graduate student in 
biology need to learn grammar? Clearly, yes. Do they all need to 
learn to speak? Clearly, yes. We just don’t leave it to the literature 
experts. That’s because we need to communicate. Do students 
need to tie their shoes? Yes. It has now come to the point where 
using a computer is as essential as brushing your teeth. If you 
want some kind of a competitive edge, you’re going to want to 
make as much use of that computer as you can. The complexity 
of the task at hand will mean that canned solutions don’t exist. 
It means that if you’re using a canned solution, you’re not at the 
edge of research.

Robinson: Yes. Even if they don’t program in their research, they 
will have to use software and likely will communicate with software 
developers. It helps tremendously to have some basic knowledge. 
Additionally, in the research environment, the ability to do basic 
tasks in the Linux/unix environment is essential.

Rasband: All scientists should learn how to program.

Box 1  Does every new biology PhD student need to learn how to program?

Corrected after print 9 May 2014.
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In the version of this article initially published, in Table 1, Steven Salzberg should have been listed as the second, and not the last, of the creators 
of the Cufflinks software. The error has been corrected in the HTML and PDF versions of the article.
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