
Assembly Pipeline Introduction and
Usage Example

Hao Yuan

Where are we now?

Exhausting
experiment Sequencing Analysis our data

ATCG…..

Inline index R1

Inline index R2

Sequence of interest

Structure of prepared library

Length of this part is sometimes called “insert size”,
which totally depends on the length of DNA after shearing

Pair-end Sequencing

Pair-end Sequencing

Pair-end Sequencing

Pair-end Sequencing

Pair-end Sequencing

Pair-end Sequencing

Pair-end Sequencing

Sequence
transferred from
sequencer called

“reads”

P5

P7

P7

P5

forward
direction

reverse
direction

Assigned (more professionally
called “demultiplexed ”) reads
according to index close to P7 Expanded file

What comes from the sequencer

Reads

Bases
composition

Quality of
Bases

File suffix is “fq” or “fastq”

How reads in xxx_R1.fq looks like

header

sequence

a “plus”

quality (phred 33)

index sequence

How reads in xxx_R2.fq looks like

header

sequence

a “plus”

index sequence

quality (phred 33)

What’s paired reads

Reads originated from the same molecular before bridge amplification
called paired reads

Paired reads in xxx_R1.fq and xxx_R2.fq

xxx_R1.fq

xxx_R2.fq

Paired reads have unique id in their corresponding file and exactly the same name

Compare reads in xxx_R1.fq and xxx_R2.fq
xxx_R1.fq

xxx_R2.fq

Paired reads are placed at the same line of its corresponding file

Let’s start analysis now!!

locus 1

locus 2

locus 3

locus 1

locus 2

locus 3

sample1
sample2
sample3

sample1
sample2
sample3

sample1
sample2
sample3

Intact sequences of
corresponding locus

of each sample

A locus is a fixed position on
chromosome. In our lab, a

locus is always an exon
flanked by intron or UTR

region

The sequence of loci used
to design the baits, we

call it “reference”

What’s the goal of analysis?

What’s the goal of analysis?

Short raw data

There’s only one sequence for each sample

locus 1
sample1
sample2
sample3

3 steps to recover qualified assemblies
from raw data

Data preparation

Assembling

Further processing

Data preparation

Demultiplex reads according to inline index

Trim low quality bases and adaptor

Demultiplex reads according to inline index

Inline index R1

Inline index R2

Reads we got still includes inline index

We need to demultiplex reads according to them, then cut them out

assign reads to its sample

How to demultiplex

sample 1 sample 2 sample 3

Reads before demultiplexing

Reads after demultiplexing

Index “green”: sample 1

Index “red”: sample 2

Index “blue”: sample 3

Paired Reads

Table

Trim low quality bases and adaptor

A cluster of reads
amplified from the
same molecular

Several rounds of extension later

Last base is

Last base is ?or

Why we need to trim low quality bases

Trim low quality bases and adaptor

A cluster of reads
amplified from the
same molecular

Several rounds of extension later

Last base is

Last base is ?or

Why we need to trim low quality bases

High quality bases

Low quality bases

longer the time of
sequencing quality
of bases becomes
lower

How to trim low quality bases

ACGGCGTAGGCTGATGATCGGGTACGTCCGATCGTAGCTGTCA

ACGGCGTAGGCTGATGATCGGGTACGTCCGATCGTAGCTGTCA

ACGGCGTAGGCTGATGATCGGGTACGTCCGATCGTAGCTGTCA

E(quality)=30

E(quality)=29

E(quality)=25

ACGGCGTAGGCTGATGATCGGGTACGTCCGATCGTAGCTGTCA

E(quality)=10

GOOD

GOOD

GOOD

BAD!!

…

ACGGCGTAGGCTGATGATCG

E(quality)>=15

Inline index R1

Inline index R2

100bp

Sequenced 150 bp

Why we need to trim adaptor?

Inline index R1

Inline index R2

100bp

Sequenced 150 bp

Why we need to trim adaptor?

How to trim adaptor?

sequence of adaptor and inline index

trimmed read

Reads have been cleaned. Let’s start assemble !

Reads 1: CGGCGGATCTGATGGGATCTGATTCGGTT

Reads 2: TCTGATTCGGTTCGGATCTGGGCAT

Reads 3: ATCTGGGCATGGCGTTCGATGTCGCTAT

What’s assemble

3 reads in a sample

Reads 1: CGGCGGATCTGATGGGATCTGATTCGGTT

Reads 2: TCTGATTCGGTTCGGATCTGGGCAT

Reads 3: ATCTGGGCATGGCGTTCGATGTCGCTAT

Resulting contig:

Contig1 CGGCGGATCTGATGGGATCTGATTCGGTTCGGATCTGGGCAT

“Contig” is the sequence assembled from the reads

What’s assemble

Contig1 CGGCGGATCTGATGGGATCTGATTCGGTTCGGATCTGGGCAT

Reads 3: ATCTGGGCATGGCGTTCGATGTCGCTAT

Resulting contig:

CGGCGGATCTGATGGGATCTGATTCGGTTCGGATCTGGGCATGGCGTTCGATGTCGCTAT

What’s assemble

Why raw data need to be assembled before
various analysis?

250bp

150bp

Reads are too short to reach the length of the locus

Length of a locus

Length of a read

How raw reads magically become sequences of
loci of each sample?

Remove PCR duplicates

Parse reads to loci

Assemble parsed reads

Further assemble

Get orthologue assemblies

Remove PCR duplicates

Reads 1: CGGCGGATCTGATGGGATCTGATTCGGTT

PCR duplicate of Reads 1: CGGCGGATCTGATGGGATCTGATTCGGTT

PCR duplicate of Reads 1: CGGCGGATCTGATGGGATCTGATTCGGTT

Reads 2: TCTGATTCGGTTCGGATCTGGGCAT

Resulting contig:

Contig1 CGGCGGATCTGATGGGATCTGATTCGGTTCGGATCTGGGCAT

Remove PCR duplicates

PCR duplicates are redundant for assembly

Reads 1: CGGCGGATCTGATGGGATCTGATTCGGTT

Reads 2: TCTGATTCGGTTCGGATCTGGGCAT

Resulting contig:

Contig1 CGGCGGATCTGATGGGATCTGATTCGGTTCGGATCTGGGCAT

R1 R2

concatenate

remove replicates

recover

Remove PCR duplicates

Parse reads to loci

Mixed short reads from lots of loci

Reads of the same color indicate they come from the same loci

I should assembled with which reads?

Parse reads to loci

If reads from different loci assembled together,
the resulting contig will be “chimera”

Parse reads to loci

locus 1

locus 2

locus 3

Remember me? I’m the sequence of
“reference”, used to design the baits

Parse reads to loci

Mixed short reads from several loci

locus 1

locus 2

locus 3

the sequence of “reference”

Compare reads with each locus

Parse reads to loci

Mixed short reads from several loci

locus 1

locus 2

locus 3

the sequences of “reference”

40% identity

60% identity

80% identity

Reads got different identity with each locus

Parse reads to loci

Mixed short reads from several loci

locus 1

locus 2

locus 3

the sequence of “reference”

80% identity

Select reads with highest identity

Parse reads to loci

locus 1 locus 2 locus 3

Unassigned reads

Most of reads are assigned to different loci.
Some reads from nowhere are still unassigned

Parse reads to loci

locus 1 locus 2 locus 3

Assemble parsed reads

Assemble parsed reads into longer contigs

Reads:

Contig:

Assemble parsed reads

Reads:

Contig:

In real case, question is not that easy. We always have loci assigned
with more than 2,000 reads

Assemble parsed reads

Find overlaps among all reads

Build a graph recording overlaps among all reads

Traverse through the graph to get contigs

Assemble parsed reads

Find overlaps among all reads

Align the reads

K-mer

FM-index

Assemble parsed reads

Find overlaps among all reads

Align the reads

K-mer

FM-index

Assemble parsed reads

Only considerable length of overlap between reads will be kept (25 bp), to
guarantee the low probability of accidentally overlap occurs

Reads:

Circle represent
the read we call

it “node” or
“vertex”

Line represents the
connection

between reads
called “edge”

Build a graph recording overlaps among all reads

Assemble parsed reads

Graph of Campylobacter jejuni

Assemble parsed reads

Traverse through the graph to get contigs

Assemble parsed reads

Traverse through the all nodes in the graph and each node only pass once

For each locus, there’s only one sequence

Traverse through the all nodes in the graph and each node only pass once

For each locus, there’s only one sequence

But this assumption is hard to fulfill

Traverse through the graph to get contigs

Assemble parsed reads

Bubble:

Break the graph into several sub-graph

Assemble parsed reads

Bubble:

Discard one of the path

Assemble parsed reads

Tip:

or

Assemble parsed reads

Why we need graph

50bp overlap

25bp overlap

Which way you should choose

Further assemble

Bubble:

Tip:

If two path is too diverged (>= 95% identity). The
path will be split into several contigs

Bubble:

Tip:

If two path is too diverged (>= 95% identity). The
path will be split into several contigs

Further assemble

Bubble:

locus1:

score 100

score 90

Each contig will be aligned to reference. Graph will be reconstructed. The alignment
score of each path will be calculated.

Further assemble

Bubble:

locus1:

score 100

score 90
x

 Keep the path with higher score.

Further assemble

speciationspeciation

What’s ortholog?

Get orthologous assemblies

Orthologues genes are derived from “speciation event”. So, the evolutionary history of
these genes are identical with the evolutionary history of species

Why we need it?

Our final aim is to reveal evolutionary history among our enriched species

Get orthologous assemblies

What will happen if we use paralog genes to reveal evolutionary history

Get orthologous assemblies

What will happen if we use paralog genes to reveal evolutionary history

frog mouse chicken

Get orthologous assemblies

This method is built on the assumption that orthologous
genes have identical or highly related functions and this
sharing is greater than for paralogs.

There’s various way to find orthologues. The method we used here called reciprocal
blast

Closest gene between 2 species are potential orthologous gene

Get orthologous assemblies

Reciprocal blast in general case

If a pair of genes in different species are the closest to each other, these 2
genes have “reciprocal best hit”

Get orthologous assemblies

(1) sequence of gene which we want to find its
orthologous sequence in other organisms
(2) genome of these 2 organisms

Reciprocal blast in our pipeline

Species of reference Enriched sample

In our situation, we do not have the genome, only got several contigs only

But, loci of reference and contig have reciprocal best hit, then they are also
putative orthologues

Get orthologous assemblies

Species of reference Enriched sample

enriched paralog lost ortholog

Exclude the contig if it does not have reciprocal blast hit with reference loci

Reciprocal blast in our pipeline

Get orthologous assemblies

Until here we’ve been reached our first goal

locus 1

locus 2

locus 3

sample1
sample2
sample3

sample1
sample2
sample3

sample1
sample2
sample3

Output until here looks like this
A “>” before the sequence name After name is sequence

First one is the sequence of reference

Following is the sequence of enriched sample

This called fasta format. File suffix is “fa”, “fas” or “fasta”

We got to notice that enriched sequences are full-coding

TATAACCTG

Y N L
Length of nucleotide can
be exactly divided by 3

Start from the
first codon

End at from the
third codon

No stop codon in amino acid sequences

Further processing

Align sequences

Filter bad aligned sequences

Summary statistics

Align sequences

Arranging the sequences of DNA, RNA, or protein to
identify regions of similarity by insert gap (“-”)

https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/RNA
https://en.wikipedia.org/wiki/Protein

Seq1 A T C G G C A G A
Seq2 A T C G G A G A

Alignment 1
Seq1 A T C G G C A G A
Seq2 A T C G G - A G A

Alignment 2
Seq1 A T C G G C A G A -
Seq2 A T C G - - G A G A

Qualify the similarity

score matrix
match = 1
mismatch = -1
linear gap = -1

Align sequences

Seq1 A T C G G C A G A
Seq2 A T C G G A G A

Alignment 1
Seq1 A T C G G C A G A
Seq2 A T C G G - A G A

Alignment 2
Seq1 A T C G G C A G A -
Seq2 A T C G - - G A G A

score = 7

score = -6

Align sequences

Alignment in our cases

Because sequences are full-coding, so gaps are also inserted in 3.
Length of alignment can be exactly divided by 3

Filter poorly aligned sequences

The resulting assemblies may still got some problems:

(1) chimera
(2) unidentified paralogs or unrelated sequence

No sequence can be aligned with chimeric sequences

Chimera

Filter poorly aligned sequences

unidentified paralogs or unrelated sequence

Species of reference Enriched sample

enriched paralog lost orthologlost ortholog

Filter poorly aligned sequences

How to filter unidentified paralogs

These paralogs are always too diverged from other captured
sequences and reference

We use pairwise distance to measure the divergence

Filter poorly aligned sequences

Seq1 A T C G G C A G A
Seq2 A T C C G - A G A

What’s pairwise distance

Column with 2 bases = 8

Different base = 1

pairwise distance = 0.125

Filter poorly aligned sequences

Other 2 kinds of special filters are also provided

Pick out loci follow the molecular clock hypotheses

Pick out loci have the provided monophyletic group

Detect contamination between taxa

Most of loci in diverged taxa cannot be very close

Detect contamination between taxa

Closely related group1: Human Chimp Orangutan

Closely related group2: Tilapia Zebra fish

too close p-distance between
taxa (<= 0.002)

Contamination rate (%) = potentially contaminated pair/all pair*100

Summary statistics

Summarized statistics for each locus including:
(1) Average length of coding region
(2) Average length of flanking region
(3) Length of alignment
(4) Average GC content
(5) Percentage of Missing data
(6) Pairwise distance

Summarized statistics for each sample including:
(1) Average length of captured sequences
(2) Average GC content
(3) Number of captured loci

Some prerequisites

Tools we need

Terminal

If you are using macOS, it can be found under “Launchpad->others”

Terminal

Tools we need

A more professional but easy to use text editor

Tools we need

Tools we need

Simple text editor can only display plain text

What to do with text editor

Write simple script

Record commands during the analysis just like experiment records

Check file format

……

Tools we need

TextWrangler (pre-installed on MacOS) BBEdit (30-days trail)

Gedit (free) Ultraedit (30-days trail)

A more professional text editor

Tools we need

A unix-like system

Linux MacOS

Tools we need

No windows here

Tools we need

%$%%46%4^4^%
$^%4^4^54^%

4&%

?????

Why no windows here

Graphical User Interface (GUI)

Command Line Interface (CLI)

How to type in and run a command in terminal

Typed characters will
be inserted here

Name of your PC

User name

command start after “$”
The current directory

Typed characters will be inserted here

How to type in and run a command in terminal

How to type in and run a command in terminal

Type “enter”

Some output from the command

A new line to type in other command

$ perl filter.pl --indir re_od_nogap --filtered filtered --cpu 4

In the following slides, i will use “$” to indicate the start of a command, like:

DO NOT INCLUDE “$” INTO YOUR COMMAND

$ /path/to/software/name_of_software

$ /path/to/software/name_of_software option

General format of a command

Some option are mandatory like name of input file, while the others are
optional like some parameter

Just the path to software

Path to software + option

option are used to pass
parameter to software

Format 1:

Format 2:

$ /path/to/software/name_of_software

$./name_of_software

General format of a command

$./name_of_software -option1 value_of_option

$./name_of_software value_of_option

call the software in
complete path

call the software in relative
path, the software is at
current directory

pass the value to
software through option
“option1”

pass the value directly to
the software

$../name_of_software
call the software in relative
path, the software is at
parent directory

Some variation of format 1 :

Some variation of format 2 :

Environment variable

How to use a software without specifying the path to it ?

How to use a software without specifying the path to it ?

They are series of pre-set value. They will be called when you
open the terminal. One of the example is $PATH

$PATH includes lots of user-defined path

Environment variable

Path to directory containing a software called bcftools

Environment variable

$ /Users/yh940209/Programs/BCFtools/bin/bcftools -h

Path to directory containing a software called bcftools

$ bcftools -h

When path is not specified before the software, system will find software
under path saved in $PATH

Environment variable

$ cd change directory to home (~)

$ nano .bash_profile
open file “.bash_profile” by an text
editor called “nano”, it will create a
new file if it does not exist

type “export…” as showed in previous slide

ctrl+o to write out the file

$ source .bash_profile Reload $PATH, or you can simply
reopen the terminal

$ echo $PATH print the directory saved in
$PATH on the terminal

Environment variable

Authority

Each user have 3 kinds of authority to a file :

read (r)

write (w)

execute (x)

If you want to make a script or software executable for current user, type:

$ chmod u+x software

command to
change

authority
only for current user

add authority

execute

How to run a perl code

$ perl assemble.pl Use the perl interpreter found under
$PATH to run the code “assemble.pl”

$ perl assemble.pl -h pass option “h” (help message) to
the code

You can call this way only if
assemble.pl is executable

$ chmod u+x assemble.pl
$./assemble.pl

Call assemble.pl found under $PATH.
In this situation, assemble.pl must
be executable

$ assemble.pl

Dependencies

Software

Module

How to install a software

source code

binary

Installer

binary

Different system varies

source code binary

Compiler

Installer binary

How to install a software

Download and use source code directly

How to install a software

How to install module

xxx.pm

Configure

installed

xxx.pm

xxx1.pm

xxx2.pm

xxx3.pm

xxx4.pm

if a modules needs lots of other modules ?

How to install module

$ perl -MCPAN -e shell

$ sudo perl -MCPAN -e shell

or

sudo allows a permitted user to
execute a command as the superuser

How to install module

How to install module

How to install module

type “install xxx.pm” and “enter”

Wait a few minute.The current installing module and
its related module will be installed together

How to install module

Format of infile

Every files under analysis must be encoded by unicode (utf-8) and line
breaks is unix (LF).

How to check encoding and line break

Format of infile

Encoding and line break

Check encoding and line breaks especially files were
produced or saved on windows

Format of infile

Avoid using non-English charaters, space or any other strange characters like
"#?@!" in filename

If you want use space, substitute it as “_” (underline)

Format of infile

Due to time limit, i won’t introduce each option and script in detail.
All scripts included in the pipeline and its function are briefly introduced
at line 70-117 of “tutorial.txt”

Access its detailed usage by:
$ perl name_of_script.pl -h

In following tutorial, each script will be introduced in this way:
(1) Function
(2) dependencies
(3) Usage
(4) involved option
(5) Input and output

We will start to learn how to assemble sequences get through target enrichment

Learn more about command line, please refer to “introToCmdLine.pdf”
under gzipped package “toturial_test_data.tar.gz”

Introduction to command line

All scripts

Test data

Tutorial

We’ve already been in running directory (/home/users/cli/ocean/yuanhao/
pipeline_demonstration/toturial_test_data/tutorial). Let’s see what’s under it by:

$ ls

command to list what’s under a directory

Let’s start run the scripts!

Data preparation

Reads are compressed

Gunzip data

Dependencies: no

Input: raw_reads

Usage:

 $ perl ./auto_assemble_pipeline/data_preparation/gunzip_Files.pl \
--gzip raw_reads \
--gunzipped gunzipped_raw_reads

Involved options:

--gzip: Directory containing gzipped raw data
--gunzipped: Directory containing expanded raw data

Output:
gunzipped_raw_reads: Directory containing expanded raw data

“\” is used to continue the
command line in a new line

Demultiplex sample based on inline index (optional)
Dependencies: no

Input:
gunzipped_raw_reads
inlineindex.txt
indexpair.txt

$ perl ./auto_assemble_pipeline/data_preparation/demultiplex_inline.pl \
--undemultiplexed gunzipped_raw_reads \
--demultiplexed demultiplexed \
--inline_index inlineindex.txt \
--index_pair indexpair.txt

Involved options:

--undemultiplexed: Directory containing expanded raw data
--demultiplexed: Directory containing demultiplexed raw data
--inline_index: File records the sequences and number of inline index.

 --index_pair: File records pairs of inline index for each sample.

Output:
demultiplexed: Directory containing demultiplexed raw data
unpaired_reads: Directory containing unpaired reads for each sample

6 bp sequence
of inline index

Name IS1 adaptor + inline index

IS3 adaptor + inline index

inlineindex.txt

indexpair.txt

Save as txt and notice about the encoding format (Unicode utf-8) and line
break (Unix (LF))

Name of
undemultiplexed

sample

Name of demultiplexed sample

Corresponding
inline index id

Must write in the order :
IS1 index IS3 index

Dependencies:
(1) trim_galore
(2) cutadapt

Input:
(1) demultiplexed
(2) inlineindex.txt
(3) indexpair.txt

Usage:

$ perl ./auto_assemble_pipeline/data_preparation/trim_adaptor.pl \
--demultiplexed demultiplexed \
--inline_index inlineindex.txt \
--index_pair indexpair.txt \
--trimmed trimmed

Output:
trimmed: Directory containing reads without adaptor and low quality bases
trimming_report: Directory containing trimming report for each sample
trimmed_reads_bases_count.txt: Tab delimited table recording number of reads and
bases of raw data and trimmed data

Trim adaptor and low quality bases
When inline index are involved in samples

Involved options:
--demultiplexed: Directory containing
demultiplexed raw data
--inline_index: File records the sequences and
number of inline index.
--index_pair: File records pairs of inline index
for each sample.
--trimmed: Output directory containing adaptor
and low quality bases trimmed reads

Input: gunzipped_raw_reads

Usage:

$ perl ./auto_assemble_pipeline/data_preparation/trim_adaptor.pl \
--demultiplexed gunzipped_raw_reads \
--trimmed trimmed

Output:
trimmed: Directory containing reads without adaptor and low quality bases
trimming_report: Directory containing trimming report for each sample
trimmed_reads_bases_count.txt: Tab delimited table recording number of reads and
bases of raw data and trimmed data

Involved options:

--demultiplexed: Directory containing demultiplexed raw data
--trimmed: Output directory containing adaptor and low quality bases trimmed reads

When no inline index are involved in samples

trimmed_reads_bases_count.txt

Query Preparation

We need to prepare:

(1) full coding

(2) amino acid sequences of reference in fasta format.

Input:
Oreochromis_niloticus.frames.fas

Usage:

 $ perl ./auto_assemble_pipeline/data_preparation/query_translate.pl \
--predicted_frames Oreochromis_niloticus.frames.fas \
--nucleo_out Oreochromis_niloticus.dna.fas \
--aa_out Oreochromis_niloticus.aa.fas

Involved options:

--predicted_frames: DNA Sequences of targeted loci with redundant nucleotides
--nucleo_out: Full coding DNA sequences of targeted loci
--aa_out: Amino acid sequences of targeted loci

Output:
Oreochromis_niloticus.dna.fas: Full coding DNA sequences of targeted loci
Oreochromis_niloticus.aa.fas: Amino acid sequences of targeted loci

Dependencies: Bioperl

Oreochromis_niloticus.frames.fas

First nucleotide
is first codon

Second nucleotide
is first codon

Third nucleotide
is first codon

This file can be generated from ./auto_assemble_pipeline/
query_preparation/predictFrames.

Please refer to ./auto_assemble_pipeline/query_preparation/
predictFrames.README for more detail.

Oreochromis_niloticus.dna.fas

Oreochromis_niloticus.aa.fas

All inputs for assembly has been prepared.
Let's start assembling now.

The main script is placed under ./auto_assemble_pipeline/assemble/assemble.pl. This
script calls another 6 scripts to recover assemblies.

6 scripts represent 6 steps of assembly. They are called by main script in following
procedure:
1) ./auto_assemble_pipeline/assemble/rmdup.pl: Remove PCR duplicates

2) ./auto_assemble_pipeline/assemble/ubxandp.pl: Parse reads to target loci

3) ./auto_assemble_pipeline/assemble/sga_assemble.pl: Assemble reads for each locus

4) ./auto_assemble_pipeline/assemble/exonerate_best.pl: Filter unqualified contigs and
find contigs which might be furtherly assembled

5) ./auto_assemble_pipeline/assemble/merge.pl: Assemble contigs further and retrieve
best contigs for each locus

6) ./auto_assemble_pipeline/assemble/reblast.pl: Remove potential paralogs

Normally, we run the whole pipeline (cleaned reads in,
orthologue assemblies out), which includes 3 steps

Softwares: (Please put them under $PATH)

perl v5.18 or higher
usearch v10.0.240 or higher
sga v0.10.15 or higher
exonerate v2.2.0 or higher

Perl module:

 Bio::Seq (Included in Bioperl)
 Parallel::Forkmanager
 Sys::Info

System requirements

Usage:

$ perl ./auto_assemble_pipeline/assemble/assemble.pl \
--check_depends \
--script_path ./auto_assemble_pipeline/assemble

Involved options:

--check_depends: Check all dependencies for assemble.pl
--script_path: Path to the scripts

Before running the script, we need to check requirements which can
be checked by "--check_depends".

Please provide "--script_path", if 6 called scripts is not placed under $PATH

Check requirements of assembling

Since --script_path is not specified, we assume all scripts lied under \$PATH. You
will use default interpreter (/usr/bin/env perl) to run the wrapper

All modules are properly installed

All softwares are properly installed

All scripts are found under $PATH

If scripts are placed under $PATH

Check the existence of sequences of
reference in given genome

We must ensure all sequences of reference can be found in
given genome, or all sequences in this loci will be lost

Input:
Oreochromis_niloticus.dna.fas
Oreochromis_niloticus.genome.fas

Usage:

$ perl ./auto_assemble_pipeline/assemble/assemble.pl \
--check_query \
--queryn Oreochromis_niloticus.dna.fas \
--db Oreochromis_niloticus.genome.fas \
--dbtype nucleo \
--script_path ./auto_assemble_pipeline/assemble

Output:
Oreochromis_niloticus.genome.fas.udb

Involved options:

--check_query: Check query sequences (--queryn) existing in given database, and
return list of missing query, then exit
--queryn: Nucleotide sequences of target loci in fasta format
--db: Path to DNA or amino acid database, either in fasta or udb format
--dbtype: Database type either 'nucleo' for DNA or 'prot' for amino acid database
—script_path: Path to the scripts

Requirements and existence of target loci in given genome have
been checked. Let's start assemble.

Input of assemble including:

(1) trimmed

(2) Oreochromis_niloticus.aa.fas

(3) Oreochromis_niloticus.dna.fas

(4) Oreochromis_niloticus.genome.fas

Assemble

Usage:

$ perl ./auto_assemble_pipeline/assemble/assemble.pl \
--trimmed trimmed \
--queryp Oreochromis_niloticus.aa.fas \
--queryn Oreochromis_niloticus.dna.fas \
--db Oreochromis_niloticus.genome.fas \
--dbtype nucleo \
--ref_name Oreochromis_niloticus \
--outdir assemble_result \
--script_path ./auto_assemble_pipeline/assemble

Involved options:

--trimmed: Directory containing reads without adaptor and low quality bases
--queryp: Amino acid sequences of target loci in fasta format
--queryn: Nucleotide sequences of target loci in fasta format
--db: Path to DNA or amino acid database, either in fasta or udb format
--dbtype: Database type either 'nucleo' for DNA or 'prot' for amino acid database
--ref_name: Substitute name of target loci as --ref_name in the output of last step
(reblast.pl), disabled in default
--outdir: Directory to pipeline output
--script_path: Path to the scripts

Several folders and files will be generated during the execution:

1) run_dir: Folder generated in step 1. All intermediate outputs will be generated under
this folder.

2) samplelist.txt: File generated in step 1. A list includes the name of all sample

3) rmdup_reads_bases_count.txt: File generated in step 1. A tab delimited table records
number of reads and bases before and after removing PCR duplicates

4) enriched_loci.txt: File generated after step 6. A tab delimited table records number of
total loci, number of enriched loci and percentage of enriched loci for each sample

5) Oreochromis_niloticus.genome.fas.udb: File generated in step 6. udb of
"Oreochromis_niloticus.genome.fas".

Output will be placed under "assemble_result" including 3 folders:

1) nf: folder containing full coding nucleotide sequences

2) f: folder containing coding sequences with flankings

3) p: folder containing amino acid sequences

If something goes wrong at intermediate step, don't
worry, assemble.pl is able to restart from intermediate
step. It can also stop at the step you want

Further processing

After assembling, recovered assemblies need to be further processed
before being fed into downstream analysis. Further processing includes:

1) Adding or deleting sequences from datasets

2) Aligning

3) Filtering

4) Summary statistics

Adding to or deleting sequences from datasets

Sequences must be added or deleted before aligning

Add orthologue sequences

Extract orthologue sequences from existing genomes

Add them into datasets

Extract orthologue sequences from existing
genomes

We extract sequences orthology to loci in "Oreochromis_niloticus.dna.fas" from
"species1.genome.fas" and “species2.genome.fas"

Dependencies:
usearch v10.0.240 or higher
BioPerl v1.007001 or higher

Input:
Oreochromis_niloticus.dna.fas
Oreochromis_niloticus.genome.fas
species1.genome.fas
species2.genome.fas

Usage:

$ perl auto_assemble_pipeline/postprocess/get_orthologues.pl \
--query Oreochromis_niloticus.dna.fas \
--querydb Oreochromis_niloticus.genome.fas \
--subdb "species1.genome.fas species2.genome.fas" \
--subname "species1 species2" \
--outdir orthologues \
--cpu 12

Involved options:

—query: File contains full coding nucleotide sequences only
—querydb: Space delimited list of one or more nucleotide databases belonging to the
same query species in either fasta (masked is better) or udb format
—subdb: Space delimited list of nucleotide databases of subjects in fasta format
(masked is better), single database for each species
—subname: Space delimited list of subject name in output, which is one-to-one match
to the list of subject databases. If this option is not specifed, the name of corresponding
sequences will be the prefix of database file.
—outdir Name of output directory, which has 2 subfolders including "nf" for coding
sequences and "p" for amino acid sequences. DO NOT NAME OUTDIR AS "qblasts",
“qblastsout", "reblast_input.fas" or "reblast" which are names of intermediate files
—cpu Limit the number of CPUs, 1 in default

Output:
orthologues: Directory includes sequences orthology to target loci

Oreochromis_niloticus.genome.fas.udb: udb of "Oreochromis_niloticus.genome.fas".

Add orthologues into datasets
Dependencies: no

Input
./assemble_result/nf
./orthologues/nf

Usage:

$ perl auto_assemble_pipeline/postprocess/merge_loci.pl \
--indir "./assemble_result/nf ./orthologues/nf" \
--outdir merged_nf \
--min_seq 3

Involved options:
--indir
 List of dir containing sequences
--outdir
 Dir containing merged loci files
--min_seq
 Minimum sequences required in merged file, 2 in default

Output:
merged_nf: Dir containing merged loci files

Merged sequences

Delete unneeded sequences
Dependencies: Nothing

Input:
merged_nf

Usage:

$ perl auto_assemble_pipeline/postprocess/pick_taxa.pl \
--indir merged_nf \
--outdir merged_nf_deselected \
--deselected_taxa "species2"

Output:
merged_nf_deselected: Dir containing sequences of without discarded taxon

Involved options:

--indir
 Dir containing unaligned sequences
--outdir
 Dir containing sequences of selected taxon
--deselected_taxa
 List of taxa want to be discarded, each taxon is delimited by space

Same locus but “species2” is discarded

Aligning

Dependencies:
(1) BioPerl v1.007001 or higher
(2) Mafft v7.294b or higher

Input:
merged_nf

Usage:

$ perl auto_assemble_pipeline/postprocess/mafft_aln.pl \
--dna_unaligned merged_nf \
--dna_aligned merged_nf_aligned \
--cpu 12

Output:
merged_nf_aligned: Dir containing nucleotide sequences aligned in codon

Involved options:

--dna_unaligned: Dir containing unaligned nucleotide sequences
--dna_aligned: Dir containing aligned nucleotide sequences, named as "xx_aligned" if
this option is not specified
—non_codon_aln: Do not align nucleotide sequences in codon. This option is turned off
by default
—cpu: Limit the number of CPUs, 1 in default.

Aligned sequences

Filtering

Some sequences may result in poorly alignment, we need to remove them

Dependencies:
(1) BioPerl v1.007001 or higher
(2) Mafft v7.294b or higher

Input:
filter_test

Usage:

$ perl auto_assemble_pipeline/postprocess/filter.pl \
--indir filter_test \
--filtered filtered \
--cpu 12

Output:
merged_nf_filtered

Involved options:
--indir: Dir containing unfiltered alignments
--filtered: Dir containing filtered alignments
--cpu: Limit the number of CPUs, 1 in default

Summary statistics

Dependencies:
Bio::AlignIO (included in Bioperl)
Bio::Align::DNAStatistics (included in Bioperl)

Input:
merged_nf_aligned
./assemble_result/f

Usage:

$ perl auto_assemble_pipeline/postprocess/statistics.pl \
--nf_aligned merged_nf_aligned \
--f_unaligned ./assemble_result/f

Involved options:
--nf_aligned:
 Folder comprising aligned full-coding sequences
--f_unaligned:
 Folder comprising unaligned whole sequences (include flanking sequences)

Output:
1) loci_summary.txt: Tab delimited table of summary statistics for each locus
2) sample_summary.txt: Tab delimited table of summary statistics for each sample

Thanks

